Math, asked by maheshkwar, 11 months ago

Use Euclid's division lemma to show that the square of any positive integer is either of the form 3m or 3m+1 for some integer m.

Answers

Answered by sanjusroy2003
1

Step-by-step explanation:

in place of m there is q that's it

Attachments:
Answered by akanksha2614
35

Answer:

✒️Let 'a' be any positive integer.

✒️On dividing it by 3 , let the 'q' be the quotient and 'r' be the remainder.

Such that

a = 3q + , where r = 0, 1, 2

When, r = 0

a = 3q + 0 ---------- (1)

When, r = 1

a = 3q + 1 ----------- (2)

When r = 2

a = 3q + 2 ------------ (3)

So ,

(1) when, a = 3q + 0

a = 3q

By squaring both side

 {a}^{2}  \:  =   \:  {(3q)}^{2}  \\  {a \:}^{2}  \:  =  \:  {9q}^{2}

By taking common

 {a}^{2}  =  \: 3 \:  \times  \:  {(3q)}^{2}  \\  {a}^{2}  \:  =  \: 3

where \: m \:  =  \:  {3}^{2}

(2) When, a = 3q + 1

By squaring both side

 {a}^{2}  \:  =  \:  {(3q \:  +  \: 1) }^{2}  \\ by \: using \: identity \:  {(a \:  +  \: b \: )}^{2}   \:  =  \:  \\  {a}^{2}  \:  +  \: 2ab \:  +  \:  {b}^{2}  \\  {a}^{2}  \:  =  \:  {9q}^{2}  \:  +  \: 2 \:  \times  \: 3q \:  \times  \: 1 \:  +  \:  {1}^{2}  \\  {a}^{2} \:  =   \:  {9q}^{2}  \:  +  \: 6q \:  +  \: 1

By taking common

 {a}^{2}  \:  =  \: 3( {3q}^{2}  \:  +  \: 2q ) \:  +  \: 1 \\  {a}^{2}  \:  =  \: 3m \:  +  \: 1 \\ where \: m \:  =  \:  {3q}^{2}  \: 2q

(3) When, a = 3q + 2

By squaring both side

 {a}^{2}  \:  =  \:  {(3q \:  +  \: 2)}^{2}  \\ by \: using \: identity \:  {(a \:  +  \: b \: ) }^{2}  \\  =  \:  {a}^{2}  \:  +  \: 2ab \:  +  \:  {b}^{2}  \\  {a}^{2}  \:  =  \:   {3q}^{2}  \:  +  \: 2 \:  \times  \: 3q \:  \times  \:  {2}^{2}  \\  {a}^{2}  \:  =  \:  {9q}^{2}  \:  +  \:  {12q}^{2}  \:  +  \: 4 \\  {a}^{2}  \:  =  \: ( {9q}^{2}  \:  + 12q \:  +  \: 3 \: ) \:  +  \: 1

By taking common

 {a}^{2}  \:   =  \: 3( {3q}^{2}  \:  +  \: 4q  \:  +  \: 1 \: ) \: 1  \\  {a}^{2}  \:  =  \: 3m \:  +  \: 1 \\ where \: m \:  =  \:  {3q}^{2}  \:  +  \: 4q \:  +  \: 1

✏️Therefore , the square of any positive integer is either of the form of 3m or 3m + 1

Similar questions