Math, asked by akhilesh22, 1 year ago

Use Euclid's division lemma to show that the square of any positive integer is of the form 3p,3p+1.

Answers

Answered by nitthesh7
148

let us take, 'x'= 3q , 3q+1, 3q+2
when, x=3q
        x2 =  (3q) 2
        
 x2 = 9q
       
 x2
  = 3(3q2)
we see that 3q2= m
so we have done the first equation 3m

when , x=3q+1
           x2= (3q+1)2
                                
 [since, (a+b)2 = a2+2ab+b2]
         
  x2= 9q+6q+1
           x2= 3(3q+2q)+1

in this we see that 3q+2q= m
    therefore, this satisfy the equation m+1

Recommend(1)Comment (0)person

Anshita , Student

Member since Feb 04 2015

let us take, 'x'= 3q , 3q+1, 3q+2
when, x=3q
        x2 =  (3q) 2
        
 x2 = 9q
       
 x2
  = 3(3q2)
we see that 3q2= m
so we have done the first equation 3m

when , x=3q+1
           x2= (3q+1)2
                                
 [since, (a+b)= a2+2ab+b2]
         
  x2= 9q+6q+1
           x2= 3(3q+2q)+1

in this we see that 3q+2q= m
    therefore, this satisfy the equation m+1

     ;hope this ans would help u...........

Answered by madarsasayyidana
2

Answer:

ooooooooooooooooooooooooo

Similar questions