Use Euclid’s division lemma to show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.
Answers
Step-by-step explanation:
follow me
rate me
Mark as brainliest
Step-by-step explanation:
If 'a' be any positive integer is b=3 then,
By Euclid division lemma,
a=bq+r (a=3q+r)
So, r = 0,1,2 because (0<r≤b)
a=3q+r
Squaring on both sides,
Now consider,
a^2 = (3q+r)^2
For r=0
a^2 = (3q+0)^2
W.K.T,
____________________
(a+b)^2 = a^2 + 2ab + b^2
____________________
= (3q)^2 + 2(3q)(0) + (0)^2
= (9q^2) + 0 + 0
= 9q^2
= 3(3q^2)
= 3m (let,m = 3q^2)
:. a^2 = 3m.
For r=1
a^2 = (3q+1)^2
W.K.T,
____________________
(a+b)^2 = a^2 + 2ab + b^2
____________________
= (3q)^2 + 2(3q)(1) + (1)^2
= (9q^2) + 6q + 1
= 3(3q^2 + 2q) + 1
= 3m+1 (let m = 3q^2 + 2q)
:. a^2 = 3m+1.
For r=2
a^2 = (3q+2)^2
W.K.T,
____________________
(a+b)^2 = a^2 + 2ab + b^2
____________________
= (3q)^2 + 2(3q)(2) + (2)^2
= (9q^2) + 12q + 4
= (9q^2) + 12q + 3 + 1
= 3(3q^2 + 4q + 1) + 1
= 3m+1 (let m=3q^2 + 4q +1)
a^2 = 3m+1.
Here,
Any positive integer is of the form 3m or 3m+1.