Math, asked by prp2113188, 6 months ago

use Euclid's division lemma to show that the square of any positive integer is of the form 3p,3p+1.​

Answers

Answered by EliteZeal
12

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\red{\underline \bold{\tt{To \:Prove :-}}}}

 \:\:

  • Square of any positive integer is of the form 3p , 3p + 1

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

As per Euclid's Division Lemma

 \:\:

➠ a = bq + r

Where ,

 \:\:

0 ≤ r < b

 \:\:

  • Let "a" be a positive integer
  • b = 3

 \:\:

Hence a = 3q + r

 \:\:

Where ,

 \:\:

0 ≤ r < 3

 \:\:

∴ r is an integer greater than or equal to 0 and less than 3

 \:\:

Hence r can be either 0 , 1 or 2

 \:\:

Case 1

 \:\:

➠ Let r = 0

 \:\:

➜ 3q + r

 \:\:

➜ a = 3q

 \:\:

Squaring both the side

 \:\:

➜ a² = (3q)²

 \:\:

➜ a² = 9q²

 \:\:

➜ a² = 3 × 3q²

 \:\:

➨ a² = 3m

 \:\:

Where ,

 \:\:

➠ p = 3q²

 \:\:

Case 2

 \:\:

➠ Let r = 1

 \:\:

➜ a = 3q + r

 \:\:

➜ a = 3q+ 1

 \:\:

Squaring on both the side we get

 \:\:

➜ a² = (3q + 1)²

 \:\:

➜ a² = (3q)² + 1 + 2 × (3q) × 1

 \:\:

➜ a² = 9q² + 6q+ 1

 \:\:

➜ a² = 3(3q² + 2q) + 1

 \:\:

➜ a² = 3p + 1

 \:\:

Where ,

 \:\:

➠ p = 3q² + 2q

 \:\:

Case 3

 \:\:

➠ Let r = 2

 \:\:

➜ a = 3q + r

 \:\:

➜ a = 3q + 2

 \:\:

Squaring on both the sides we get

 \:\:

➜ a² = (3q + 2)²

 \:\:

➜ a² = 9q² + 4 + (2 × 3q × 2)

 \:\:

➜ a² = 9q ² + 12q + 3 + 1

 \:\:

➜ a² = 3(3q² + 4q + 1) + 1

 \:\:

➜ a² = 3p + 1

 \:\:

Where ,

 \:\:

➠ p = 3q² + 4q + 1

 \:\:

∴ Square of any positive integer is of the form 3p or 3p + 1

 \:\:

Hence proved

 \:\:

═════════════════════════

Answered by grithachinnu30
0

Step-by-step explanation:

ok is will create join okay

Similar questions