Use Euclid's division lemma to show that the square of any positive integer is either of
the form 3m or 3m + 1 for some integer m.
Answers
Answer:
3m is known as 3m by their 3m which is known as 3m and it is denoted as 3m .
Step-by-step explanation:
please put me as brainee
Answer:
Let us consider a positive integer a
Divide the positive integer a by 3, and let r be the reminder and b be the quotient such that
a = 3b + r……………………………(1)
where r = 0,1,2,3…..
Case 1: Consider r = 0
Equation (1) becomes
a = 3b
On squaring both the side
a² = (3b)²
a² = 9b²
a² = 3 × 3b²
a² = 3m
Where m = 3b²
Case 2: Let r = 1
Equation (1) becomes
a = 3b + 1
Squaring on both the side we get
a² = (3b + 1)²
a² = (3b)² + 1 + 2 × (3b) × 1
a² = 9b² + 6b + 1
a² = 3(3b² + 2b) + 1
a² = 3m + 1
Where m = 3b² + 2b
Case 3: Let r = 2
Equation (1) becomes
a = 3b + 2
Squaring on both the sides we get
a² = (3b + 2)²
a² = 9b² + 4 + (2 × 3b × 2)
a² = 9b² + 12b + 3 + 1
a² = 3(3b² + 4b + 1) + 1
a² = 3m + 1
where m = 3b² + 4b + 1
∴ Square of any positive integer is of the form 3m or 3m+1.
Hence proved.