Math, asked by Praveen12347, 1 year ago

use euclid's division Lemma to show that the square of any positive integers is in the form 3p, 3p+1

Answers

Answered by piyushkumarsa
4

let the positive integer as "a" and b=3,

a=bq+r,where 0<r<b

possible remainder - 0,1,2

case1.......a=3q+0=3q

case2.......a=3q+1

case2.......a=3q+2

a=3q

(a)²=(3q)²

a²=9q²

a²=3(3q²)

a²=3p [where p=3q²]

a=3q+1

(a)²= (3q+1)²

a²=9q² +6q+ 1

a²=3(3q²+2q)+1

a²=3p+1[where p=3q²+2q]

a=3q+2

(a)²=(3q+2)²

a²=9q²+12q+4

a²=9q²+12q+3+1

a²= 3(3q²+4q+1)+1

a²=3p+1[where p=3q²+4q+1]


Praveen12347: i can't understand
Answered by Anonymous
1

Step-by-step explanation:

Question : ------

→ Use Euclid's Division lemma to show that the Square of any positive integer cannot be of form 5m + 2 or 5m + 3 for some integer m.

 \huge \pink{ \mid{ \underline{ \overline{ \tt Answer: -}} \mid}}

▶ Step-by-step explanation : -

Let ‘a’ be the any positive integer .

And, b = 5 .

→ Using Euclid's division lemma :-

==> a = bq + r ; 0 ≤ r < b .

==> 0 ≤ r < 5 .

•°• Possible values of r = 0, 1, 2, 3, 4 .

→ Taking r = 0 .

Then, a = bq + r .

==> a = 5q + 0 .

==> a = ( 5q )² .

==> a = 5( 5q² ) .

•°• a = 5m . [ Where m = 5q² ] .

→ Taking r = 1 .

==> a = 5q + 1 .

==> a = ( 5q + 1 )² .

==> a = 25q² + 10q + 1 .

==> a = 5( 5q² + 2q ) + 1 .

•°• a = 5m + 1 . [ Where m = 5q² + 2q ] .

→ Taking r = 2 .

==> a = 5q + 2 .

==> a = ( 5q + 2 )² .

==> a = 25q² + 20q + 4 .

==> a = 5( 5q² + 4q ) + 4 .

•°• a = 5m + 4 . [ Where m = 5q² + 4q ] .

→ Taking r = 3 .

==> a = 5q + 3 .

==> a = ( 5q + 3 )² .

==> a = 25q² + 30q + 9 .

==> a = 25q² + 30q + 5 + 4 .

==> a = 5( 5q² + 6q + 1 ) + 4 .

•°• a = 5m + 4 . [ Where m = 5q² + 6q + 1 ] .

→ Taking r = 4 .

==> a = 5q + 4 .

==> a = ( 5q + 4 )² .

==> a = 25q² + 40q + 16 .

==> a = 25q² + 40q + 15 + 1 .

==> a = 5( 5q² + 8q + 3 ) + 1 .

•°• a = 5m + 1 . [ Where m = 5q² + 8q + 3 ] .

→ Therefore, square of any positive integer in cannot be of the form 5m + 2 or 5m + 3 .

✔✔ Hence, it is proved ✅✅.

 \huge \orange{ \boxed{ \boxed{ \mathscr{THANKS}}}}

Similar questions