Math, asked by tanishq6321, 1 year ago

use Euclid's divsion algorithm to find the HCF of 441,567anf 693.​

Answers

Answered by Tabbassum77
3

Answer:

Here is your answer.

hope it helps you.......

Attachments:
Answered by Anonymous
0

Answer:

The Euclidean Algorithm for finding HCF (A,B) is as follows:

If A=0 then HCF (A,B)=B, since the HCF (0,B)=B, and we can stop.  

If B=0 then HCF (A,B)=A, since the HCF (A,0)=A, and we can stop.  

Write A in quotient remainder form (A=BQ+R)

Find HCF (B,R) using the Euclidean Algorithm since 

HCF (A,B)=HCF(B,R)

Here, HCF of 441 and 567 can be found as follows:-

567=441×1+126

⇒ 441=126×3+63

⇒ 126=63×2+0

Since remainder is 0, therefore, 

H.C.F of (441,567) is =63

Now H.C.F of 63 and 693 is

693=63×11+0

Therefore, H.C.F of (63,693)=63

Thus, H.C.F of (441,567,693)=63.   

Similar questions
Math, 1 year ago