Math, asked by krishnasingh1074, 1 year ago

use euclid's Lemma theorem to show that cube of any positive integer is of the form 9q+1 or 9q + 1 or 9q+ 8 for some integer

Answers

Answered by Anonymous
7

Answer:

Let a be any positive integer and b = 3

a = 3q + r, where q ≥ 0 and 0 ≤ r < 3

  

Therefore, every number can be represented as these three forms. There are three cases.

Case 1: When a = 3q, 

  

Where m is an integer such that m =  (3q)3 = 27q3

9(3q3) = 9m

Case 2: When a = 3q + 1,

a 3 = (3q +1) 3 

a 3 = 27q 3 + 27q 2 + 9q + 1 

a 3 = 9(3q 3 + 3q 2 + q) + 1

a 3 = 9m + 1 

Where m is an integer such that m = (3q 3 + 3q 2+ q) 

Case 3: When a = 3q + 2,

a 3 = (3q +2) 3 

a 3 = 27q 3 + 54q 2 + 36q + 8 

a 3 = 9(3q 3 + 6q 2 + 4q) + 8

a 3 = 9m + 8

Where m is an integer such that m = (3q 3 + 6q 2+ 4q) 

Therefore, the cube of any positive integer is of the form 9m, 9m + 1, or 9m + 8.

Hope this helps!!

cheers!! (:

★‡★

⚡Hope it will help you.⚡

Similar questions