Use Euclids algorithm to find HCF of 1190 and1445.Express the HCF in form of 1190m+1445n.
Answers
Answered by
6
Solution :
_____________________________________________________________
Given :
To use euclid's division algorithm to find HCF of 1190 & 1445 & To express them in the form m & n,.
_____________________________________________________________
We , know that,
⇒ a = bq + r
where,. a > b > r ≥ 0
So,
∴ a = 1445
∴ b = 1190
Using euclid algorithm we get,
⇒ 1445 = 1190 x 1 + 255
⇒ 1190 = 255 x 4 + 170
⇒ 255 = 170 x 1 + 85
⇒ 170 = 85 x 2 + 0
∴ HCF{1445,1190} = 85
Hence,.
By in linear form,.
⇒ 85 = 1190 x (-6) + 1445 x (5)
∴ m = -6 & ∴ n = 5
_____________________________________________________________
Hope it Helps !!
⇒ Mark as Brainliest,.
_____________________________________________________________
Given :
To use euclid's division algorithm to find HCF of 1190 & 1445 & To express them in the form m & n,.
_____________________________________________________________
We , know that,
⇒ a = bq + r
where,. a > b > r ≥ 0
So,
∴ a = 1445
∴ b = 1190
Using euclid algorithm we get,
⇒ 1445 = 1190 x 1 + 255
⇒ 1190 = 255 x 4 + 170
⇒ 255 = 170 x 1 + 85
⇒ 170 = 85 x 2 + 0
∴ HCF{1445,1190} = 85
Hence,.
By in linear form,.
⇒ 85 = 1190 x (-6) + 1445 x (5)
∴ m = -6 & ∴ n = 5
_____________________________________________________________
Hope it Helps !!
⇒ Mark as Brainliest,.
frostbeast55:
yes it helped but how can I mark it brainlist
Answered by
4
Given:
Two numbers
a = 1190
b = 1445
To find:
Highest common factor (HCF) of a and b.
Express it in form of 1190m +1445n.
Solution:
Now,
Similar questions