use euclids division Lemma , to show that the cube of any positive integer is of the form 9 M, 9 M + 1 or 9 M + 8 for some integer m
Answers
Explanation:
let a= cube of any positive integer
let b=3
Applying Euclid division lemma ,
a=3q+r
now,since b=3 then r=0,1,2
so, we have possible outcomes of,
CASE-1- a=3q+0
CASE-2- a=3q+1
CASE-3- a=3q+2
Now, In CASE-1-
a=3q
a^3=27q^3
a^3= 9×(3q^3)
a^3=9m------------- where m=3q^3
CASE-2-
a=3q+1
a^3=27q^3 + 27q^2 + 9q+1
a^3=9 (3q^3+3q^2+q)+1
a^3=9m+1----------------where m=(3q^3+3q^2+q)
CASE-3-
a=3q+2
a^3=27q^3+ 54q^2 +18q + 8
a^3=9 (3q^3+6q^2+2q)+8
a^3=9m+8----------------where m=(3q^3+6q^2+2q)
Hence,we can show any cube of positive integer in form of 9m,or 9m+1,or9m+8
Explanation:
Let a be any positive integer and b = 3
a = 3q + r, where q ≥ 0 and 0 ≤ r < 3
∴ r = 0,1,2 .
Therefore, every number can be represented as these three forms. There are three cases.
Case 1: When a = 3q,
Where m is an integer such that m =
Case 2: When a = 3q + 1,
a = (3q +1) ³
a = 27q ³+ 27q ² + 9q + 1
a = 9(3q ³ + 3q ² + q) + 1
a = 9m + 1 [ Where m = 3q³ + 3q² + q ) .
Case 3: When a = 3q + 2,
a = (3q +2) ³
a = 27q³ + 54q² + 36q + 8
a = 9(3q³ + 6q² + 4q) + 8
a = 9m + 8
Where m is an integer such that m = (3q³ + 6q² + 4q)
Therefore, the cube of any positive integer is of the form 9m, 9m + 1, or 9m + 8.
Hence, it is proved .