Use factor theorem to factorize 6x^3+ 17x^2+ 4x- 12 completely
Answers
Answered by
65
Answer:
(x + 2) (2x + 3)(3x - 2)
Step-by-step explanation:
We have,
p(x) = 6x³ + 17x² + 4x - 12
Put x = 1 in p(x),
p(1) = 6(1)³ + 17(1)² + 4(1) - 12
p(1) = 6 + 17 + 4 - 12
p(1) = 15 ≠ 0
Put x = - 1 in p(x),
p(-1) = 6(-1)³ + 17(-1)² + 4(-1) - 12
p(-1) = -6 + 17 - 4 - 12
p(-1) = -22 + 17
p(-1) = -5 ≠ 0
Put x = -2 in p(x),
p(-2) = 6(-2)³ + 17(-2)² + 4(-2) - 12
p(-2) = -48 + 68 - 8 - 12
p(-2) = -68 + 68 = 0
x + 2 is a factor of p(x)
Now, 6x³ + 17x² + 4x - 12
6x³ + 12x² + 5x² + 10x - 6x + 12
6x²(x + 2) + 5x(x + 2) - 6(x + 2)
(x + 2) (6x² + 5x - 6)
(x + 2) (6x² + 9x - 4x - 6)
(x + 2) [3x(2x + 3) - 2(2x + 3)]
∴ (x + 2) (2x + 3)(3x - 2)
Similar questions
Social Sciences,
2 months ago
Science,
2 months ago
Hindi,
2 months ago
Social Sciences,
11 months ago
Science,
11 months ago