Math, asked by ananyaaa3453, 11 months ago

Use factor theorem to show that x4+2x3-2x2+2x-3 is exactly divisible by x+3

Answers

Answered by pa8704825gmailcom68
6

Step-by-step explanation:

this is the answer of the above question.

Attachments:
Answered by Anonymous
0

Answer:

Step-by-step explanation:Answer Expert Verified

4.0/5

87

kvnmurty

14.6K answers

29.7M people helped

From the question, we see that    66 = 60 + 6 ,      42 = 60 - 18  and  78 = 60 +18

Tan42  Tan 78

 = Tan (60 - 18) * Tan (60 + 18)

 = (Tan 60 - tan 18) / (1+tan60 tan18)  * (tan60 + tan18) / (1 - Tan60 tan18)

 = (√3 - tan18) (√3 + tan18) / [ (1+√3 tan18)(1-√3 tan18) ]

 = (3 - tan²18) / (1 - 3 tan²18)      ---- (1)

 =  (3 Cos²18 - Sin²18) / (Cos²18 - 3 Sin²18)

 =  (3 - 4 Sin²18) / (4 Cos²18 - 3)

 =  [ Sin 3*18 / Sin 18 ] / [ Cos 3*18 / Cos 18 ]

 = Tan 54 / Tan 18                                       ---- (2)

       from the formula Sin 3A = sinA (3 - 4 sin²A)  and Cos3A = CosA (4 Cos²A - 3)

Tan 6 Tan 66

  = Tan (60 + 6) * tan 6 * tan (60-6) / tan 54  

  = tan (60 - 6) * tan (60 +6) * tan 6 / tan 54

  = [(√3 + tan 6) / (1 -√3 tan 6) ] * [(√3 + tan 6) / (1 - √3 tan6)] * tan 6 / tan 54

  = [ (3 - tan² 6) / (1 - 3 tan² 6) ] * tan 6 / tan 54

  = [ (3 Cos² 6 - Sin² 6) / ( Cos² 6 - 3 Sin² 6) ] * [ tan 6 / tan 54 ]

  = [ (3 - 4 Sin² 6) / (4 Cos² 6 - 3) ] * tan 6 / tan 54 ]

  = [ (3 Sin 6 - 4 Sin³ 6) / (4 Cos³ 6 - 3 Cos 6) ] / tan 54 ]

  = Sin (3*6) / Cos (3*6)  / tan 54

  = Tan 18 / Tan 54

Hence,  Tan 6 tan 42 tan 66  tan 78

    = Tan 54 / Tan 18  *  tan 18 / Tan 54  

    = 1

================================

Another way:

Tan (60 - A)

        = (tan 60 - tan A) / (1 + tan 60 tan A)

        = (√3 - Tan A) / (1 + √3 tan A)                    ---- (1)

Tan (60 +A)

        = (tan 60 + tan A) / (1 - Tan60 Tan A)

        = ( √3 + Tan A) / (1 - √3 Tan A)                  ---- (2)

Tan (60 - A) * Tan (60 + A)

        = (3 - Tan²A) / (1 - 3 Tan²A)

        = (3 - sec²A + 1) / (1 - 3 sec²A + 3)

        = (4 Cos²A -1) / (4 Cos²A - 3)              --- (3)

Sin 3A = 3 Sin A - 4 Sin³ A

Cos 3A = 4 Cos³ A - 3 Cos A

Tan 3A  =  [ 3 Sin A - 4 Sin³A ] / [ 4 Cos³ A - 3 Cos A]

           =  Tan A [ 4 Cos² A - 1 ] / [ 4 Cos² A - 3 ]            ---- (4)

           = Tan A [ 4 - sec² A ] / [ 4 - 3 Sec² A ]

           =   Tan A [ 3 - Tan² A ] / [ 1 - 3 Tan² A ]               --- (5)

From  (1), (2) , (3) , (4)  we have:

Tan 3A / Tan A = Tan (60 - A)  Tan (60 + A)    --- (6)

================

Now,    let  A = 18°  in (6)

      =>  Tan 54° / Tan 18° = Tan 42° Tan 78°        ---- (7)

Let A = 6° in (6)

      =>  Tan 18°/Tan 6° = Tan 54°  Tan 66°

      =>  Tan 18° / Tan 54° = Tan 6°  Tan 66°        --- (8)

Multiplying (8) and (7):

  Tan 6°  Tan 42° Tan 66° Tan 78°

       =  tan 54 / tan 18   *  tan 18/ Tan 54

       = 1

Similar questions