Use factor theorem to show that x4+2x3-2x2+2x-3 is exactly divisible by x+3
Answers
Step-by-step explanation:
this is the answer of the above question.
Answer:
Step-by-step explanation:Answer Expert Verified
4.0/5
87
kvnmurty
14.6K answers
29.7M people helped
From the question, we see that 66 = 60 + 6 , 42 = 60 - 18 and 78 = 60 +18
Tan42 Tan 78
= Tan (60 - 18) * Tan (60 + 18)
= (Tan 60 - tan 18) / (1+tan60 tan18) * (tan60 + tan18) / (1 - Tan60 tan18)
= (√3 - tan18) (√3 + tan18) / [ (1+√3 tan18)(1-√3 tan18) ]
= (3 - tan²18) / (1 - 3 tan²18) ---- (1)
= (3 Cos²18 - Sin²18) / (Cos²18 - 3 Sin²18)
= (3 - 4 Sin²18) / (4 Cos²18 - 3)
= [ Sin 3*18 / Sin 18 ] / [ Cos 3*18 / Cos 18 ]
= Tan 54 / Tan 18 ---- (2)
from the formula Sin 3A = sinA (3 - 4 sin²A) and Cos3A = CosA (4 Cos²A - 3)
Tan 6 Tan 66
= Tan (60 + 6) * tan 6 * tan (60-6) / tan 54
= tan (60 - 6) * tan (60 +6) * tan 6 / tan 54
= [(√3 + tan 6) / (1 -√3 tan 6) ] * [(√3 + tan 6) / (1 - √3 tan6)] * tan 6 / tan 54
= [ (3 - tan² 6) / (1 - 3 tan² 6) ] * tan 6 / tan 54
= [ (3 Cos² 6 - Sin² 6) / ( Cos² 6 - 3 Sin² 6) ] * [ tan 6 / tan 54 ]
= [ (3 - 4 Sin² 6) / (4 Cos² 6 - 3) ] * tan 6 / tan 54 ]
= [ (3 Sin 6 - 4 Sin³ 6) / (4 Cos³ 6 - 3 Cos 6) ] / tan 54 ]
= Sin (3*6) / Cos (3*6) / tan 54
= Tan 18 / Tan 54
Hence, Tan 6 tan 42 tan 66 tan 78
= Tan 54 / Tan 18 * tan 18 / Tan 54
= 1
================================
Another way:
Tan (60 - A)
= (tan 60 - tan A) / (1 + tan 60 tan A)
= (√3 - Tan A) / (1 + √3 tan A) ---- (1)
Tan (60 +A)
= (tan 60 + tan A) / (1 - Tan60 Tan A)
= ( √3 + Tan A) / (1 - √3 Tan A) ---- (2)
Tan (60 - A) * Tan (60 + A)
= (3 - Tan²A) / (1 - 3 Tan²A)
= (3 - sec²A + 1) / (1 - 3 sec²A + 3)
= (4 Cos²A -1) / (4 Cos²A - 3) --- (3)
Sin 3A = 3 Sin A - 4 Sin³ A
Cos 3A = 4 Cos³ A - 3 Cos A
Tan 3A = [ 3 Sin A - 4 Sin³A ] / [ 4 Cos³ A - 3 Cos A]
= Tan A [ 4 Cos² A - 1 ] / [ 4 Cos² A - 3 ] ---- (4)
= Tan A [ 4 - sec² A ] / [ 4 - 3 Sec² A ]
= Tan A [ 3 - Tan² A ] / [ 1 - 3 Tan² A ] --- (5)
From (1), (2) , (3) , (4) we have:
Tan 3A / Tan A = Tan (60 - A) Tan (60 + A) --- (6)
================
Now, let A = 18° in (6)
=> Tan 54° / Tan 18° = Tan 42° Tan 78° ---- (7)
Let A = 6° in (6)
=> Tan 18°/Tan 6° = Tan 54° Tan 66°
=> Tan 18° / Tan 54° = Tan 6° Tan 66° --- (8)
Multiplying (8) and (7):
Tan 6° Tan 42° Tan 66° Tan 78°
= tan 54 / tan 18 * tan 18/ Tan 54
= 1