Math, asked by rose91468, 10 months ago

use for questions 1 through 2 : Given line segments AB with endpoints A(-1,7) and B(11,-1)
1) find the length of AB


2)find the midpoint of AB

Answers

Answered by Rythm14
87

Question :-

Given line segment AB with endpoints A(-1,7) and B(11,-1).

To find :-

  • Length of AB
  • Midpoint of AB

Solution :-

(i) To find the length of AB, we measure the distance between these points, using the distance formula.

distance \: formula =  \sqrt{ ({x}_{2}  -  {x}_{1})^2 + ( {y}_{2} -  {y}_{1}  )^2 }

Here,

  • x2 = 11
  • x1 = -1
  • y1 = 7
  • y2 = -1

substituting values in the formula,

= √(11-(-1)^2 + (-1-7)^2

= √(11+1)^2 + (-1-7)^2

= √(12)^2+(-8)^2

= √144-64

= √80 sq. units.

____________________________

(ii) Using midpoint formula,

( \frac{x1  +  x2}{2},\frac{y1 + y2}{2} )

substituting values in the formula,

= (-1+11)/2 , (7+(-1)/2

= (10)/2 , (6)/2

= 5,3

•°• (5,3) is the required point.

Answered by TheBrainlyGirL001
16
  • \underline\mathcal\blue{To\:find...}

✰✰ length of AB...

✰✰ midpoint of AB...

  • \underline\mathcal\blue{Given...}

✰✰ A = ( -1, 7 )

✰✰ B = ( 11, -1 )

  • \underline\mathcal\blue{SoLution...}

We measure the distance between A and B points to find the length of AB by using distance formula...

 \:distance \: formula \:  =  \:  \sqrt{( x_{2} -  x_{1}) ^{2} + (y_{2} - x_{1}} ) ^{2}

x2 = 11

x1 = -1

y2 = -1

y1 = 7

  • substituting values in the formula...

√ ( 11 - ( -1 ) )² + ( -1 -7 ) ²

√ 180 sq. units...

  • using midpoint formula...

  \dfrac{x1 + x2}{2} , \dfrac{y1 + y2}{2}

  • substituting values in the formula...

  \dfrac{-1 + 11}{2} , \dfrac{7 + (-1)}{2}

  • ===> 5 , 3
Similar questions