Math, asked by moizk932, 16 days ago


Use Fourth-order Runge-Kutta method to find u(0.2), the initial value problem du/dx = –2tu^2 where
u(0)1, using h = 0.1

Answers

Answered by anubhabkumar2020
0

Answer:

Answer:

Answer: L=2m,

Answer: L=2m,d=3mm,A=

Answer: L=2m,d=3mm,A= 4

Answer: L=2m,d=3mm,A= 49π

Answer: L=2m,d=3mm,A= 49π

Answer: L=2m,d=3mm,A= 49π ×10

Answer: L=2m,d=3mm,A= 49π ×10 −6

Answer: L=2m,d=3mm,A= 49π ×10 −6 m

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL=

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 4

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm .

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm .Step-by-step explanation:

wow!

Similar questions