Math, asked by unicorn53, 5 months ago

Use identities to evaluate :
(i) (101)²
pls tell the solution ​

Answers

Answered by BoldStyle
3

101 can be written as 100 + 1

( 100 + 1 ) ²

Using the formula

( a + b ) ² = + 2ab +

( 100 ) ² + 2 x 100 x 1 + ( 1 ) ²

10000 + 200 + 1

Answer 10201

Answered by Anonymous
11

\textbf{\underline{\underline{QUESTION}}} :

\bf{Use \  identities \  to \ evaluate :}

\bf{(101)^2}

\textbf{\underline{\underline{ANSWER}}} :

\bf{(101)^2} = (100+1)^2

\bf{(a+b)^2=a^2+2ab+b^2}

\bf{a= 100 , b = 1}

\bf{101^2 = 100^2 + 2(100)(1) + 1^2 }

\bf{(100+1)^2 = 10000 + 200 + 1  =} {\underline{10201}}}

  \bf{Hope \ it \ helps \  !!}

Similar questions