Math, asked by Anonymous, 4 months ago

use identity ( x + a ) ( x + b) = x² + ( a + b) x + ab to find the product of the following . (1) ( x + 3 ) ( x + 7 ) . (2) ( 2a² + a) ( 2a² + 5 )

Answers

Answered by brainlyB0SS
3

» 70,000 + 5,90,000 - 60,000

⇒ 6,00,000

C = 6,00,000

Gross t = Net S - Cost

Gross = 7,20,000 - 6,00,000

⇒ 1,20,000

Gross =1,20,000

Answered by Anonymous
22

Question :

Find the product of the following . [ by using identity (x+a)(x+b)=x² + ( a + b) x + ab ]

( x + 3 ) ( x + 7 )

( 2a² + a) ( 2a² + 5 )

Solution :

\sf\fbox{We have to find the product}

1) ( x + 3 ) ( x + 7 )

By using identity [ (x+a) (x+b)=x² + ( a + b) x + ab ]

\sf\implies\:(x+3)(x+7)

\sf=x^2+(7+3)x+7

\sf=x^2+10x+21=x

Thus ,

( x + 3 ) ( x + 7 ) = x ²+ 10 x +21

2) ( 2a² + a) ( 2a² + 5 )

Now , use identity [ (x+a) (x+b)=x² + ( a + b) x + ab ]

Then ,

\sf\implies(2a^2+a)(2a^2+5)

\sf=(2a^2)^2+(a+5)(2a^2)

\sf=4a^4+2a^3+10a^2+5a=4a

_______________

More Algeraic Indentities:

1)\sf{(a+b)^2=a^2+b^2+2ab}(a+b)

2)\sf{(a-b)^2=a^2+b^2-2ab}(a−b)

3)\sf{(a^2-b^2)=(a+b)(a-b)}(a

4)\sf{(a+b+c)^2={a}^{2}+{b}^{2}+{c}^{2}+2ab+2bc+2ca}4)(a+b+c)

5)\sf{(a+b)^3=a^3+b^3+3ab(a+b)}(a+b)

Similar questions
Math, 10 months ago