use identity to factorise a² + c² - b² + 2ac
Answers
Answered by
3
a^2–2ab+b^2 - c^2
((a-b)(a-b))-c^2
(a-b)^2-c^2
Set x =a-b and y=c. The formula becomes
x^2-y^2
factoring this polynomial, we get
(x+y)(x-y)
Substituting back, we get:
(a-b+c)(a-b-c)
Let’s multiply it out to check:
A^2 -ab ac
- ab B^2 -bc
-ac bc -c^2
/ QED.
Break it down into parts:
a²+b²-2ab=(a-b)(a-b)
a²+b²-c²-2ab=(a-b)²-c²
Then, factor in c²:
(a-b)²-c²=((a-b)+c)((a-b)-c)
=(a-b+c)(a-b+c).....
HOPE IT HELPS UH
Similar questions