Math, asked by jainrahul1271, 24 days ago

Use implicit differentiation to find the equation of the tangent line to the curve x * y ^ 3 + xy = 1 at the point (1, 1) . The equation of this tangent line can be written in the form y = mx + b where m is: and where b is:​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \rm \: x. {y}^{3}  + xy = 1

Differentiating both sides w.r.t x,

 \rm \implies \:  {y}^{3} . \frac{d}{dx} (x)  + x. \frac{d}{dx}( {y}^{3} ) + y. \frac{d}{dx}(x) + x \frac{d}{dx} (y) = 0  \\

 \rm \implies \:  {y}^{3} . 1  + x.3 {y}^{2}  \frac{dy}{dx} + y. 1 + x \frac{dy}{dx}= 0  \\

 \rm \implies \:  {y}^{3}   + 3x {y}^{2}  \frac{dy}{dx} + y+ x \frac{dy}{dx}= 0  \\

 \rm \implies \:  ({y}^{3}  + y)  + (3x {y}^{2}  + x) \frac{dy}{dx}= 0  \\

 \rm \implies \:   \frac{dy}{dx}=    -  \frac{{y}^{3}  + y }{3x {y}^{2}  + x} \\

Now,

 \rm \implies \:   \frac{dy}{dx} \bigg| _{(x = 1 , y = 1)}  =    -  \frac{{(1)}^{3}  + 1 }{3.(1) .{(1)}^{2}  + 1} \\

 \rm \implies \:   \frac{dy}{dx} \bigg| _{(x = 1 , y = 1)}  =    -  \frac{1  + 1 }{3.1 .1  + 1} \\

 \rm \implies \:   \frac{dy}{dx} \bigg| _{(x = 1 , y = 1)}  =    -  \frac{2 }{3  + 1} \\

 \rm \implies \:   \frac{dy}{dx} \bigg| _{(x = 1 , y = 1)}  =    -  \frac{2 }{4}  =   - \frac{1}{2} \\

Equation of tangent:

 \rm(y - 1) =   - \frac{ 1}{2} (x - 1) \\

 \rm \implies \:y - 1=   - \frac{ 1}{2}x +   \frac{1}{2} \\

 \rm \implies \:y =   - \frac{ 1}{2}x +   \frac{1}{2}  + 1\\

 \rm \implies \:y =   - \frac{ 1}{2}x +   \frac{3}{2}  \\

So, on comparing with \rm\:y=mx+b

we get, \rm\:m=-\frac{1}{2}\\ and\rm\:b=\frac{3}{2}\\

Similar questions