Math, asked by victoriaconsole, 1 month ago

use implicit differentiation to find the slope of the tangent line to the curve 4x^2+2x+xy =2 at the point (2, -9)

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Let the point be P (2, - 9).

and

Given curve is

\rm :\longmapsto\: {4x}^{2} + 2x + xy = 2

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}({4x}^{2} + 2x + xy) =\dfrac{d}{dx} 2

We know,

 \red{ \boxed{ \sf{\dfrac{d}{dx}(u + v) \:  =  \: \dfrac{du}{dx} + \dfrac{dv}{dx}}}}

and

 \red{ \boxed{ \sf{\dfrac{d}{dx}k\: =  \: 0 }}}

So, using these Identities, we get

\rm :\longmapsto\: \dfrac{d}{dx}{4x}^{2} + \dfrac{d}{dx}2x +\dfrac{d}{dx} xy =0

We know,

 \red{ \boxed{ \sf{\dfrac{d}{dx}k \: f(x)\: =  \: k \: \dfrac{d}{dx} \: f(x) }}}

and

 \red{ \boxed{ \sf{\dfrac{d}{dx} \: u.v \:  = \: v\dfrac{d}{dx}u \:  + \: u\dfrac{d}{dx}v }}}

So, we get

\rm :\longmapsto\:4 \dfrac{d}{dx}{x}^{2} +2 \dfrac{d}{dx}x +x\dfrac{d}{dx}y + y\dfrac{d}{dx}x =0

We know,

 \red{ \boxed{ \sf{\dfrac{d}{dx} {x}^{n}  \:  =  {nx}^{n - 1} }}}

Using this,

\rm :\longmapsto\:8x + 2 + x\dfrac{dy}{dx} + y = 0

\rm :\longmapsto\:x\dfrac{dy}{dx}=  - 8x - 2 - y

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{ - 8x - y - 2}{x}

Therefore,

 \red{ \boxed{ \sf{Slope \: of \: tangent \:  =  \: {\bigg(\dfrac{dy}{dx} \bigg) }_P}}}

\rm :\longmapsto\: \bigg(\dfrac{dy}{dx} \bigg)_{P} = \dfrac{ - 8 \times 2 - 2 + 9}{2}

\rm :\longmapsto\: \bigg(\dfrac{dy}{dx} \bigg)_{P} = \dfrac{ -16 + 7}{2}

\rm :\longmapsto\: \bigg(\dfrac{dy}{dx} \bigg)_{P} = \dfrac{ -9}{2}

Hence,

 \red{ \boxed{ \sf{Slope \: of \: tangent \:  =  \: {\bigg(\dfrac{dy}{dx} \bigg) }_{P(2, - 9)}} =  -  \:  \frac{9}{2} }}

Additional Information :-

Let y = f(x) be any curve, then line which touches the curve y = f(x) exactly at one point say P is called tangent and that very point P, if we draw a perpendicular on tangent, that line is called normal to the curve at P.

 \red{ \boxed{ \sf{Slope \: of \: tangent \:  =  \: {\bigg(\dfrac{dy}{dx} \bigg) }_P}}}

and

 \red{ \boxed{ \sf{Slope \: of \: normal\: =  \frac{ - 1}{\bigg(\dfrac{dy}{dx} \bigg)_P}  }}}

2. If tangent is parallel to x - axis, its slope is 0.

3. If tangent is parallel to y - axis, its slope is not defined

4. Two lines having slope M and m are parallel, iff M = m

5. If two lines having slope M and m are perpendicular, iff Mm = - 1.

Similar questions