Math, asked by parul1611, 11 months ago

Use integration by parts to integrate
x sec x tan x dx​

Answers

Answered by sprao53413
4

Answer:

Please see the attachment

Attachments:
Answered by shadowsabers03
7

\displaystyle\longrightarrow\sf{\int x\ \sec x\ \tan x\ dx=\int x\ (\sec x\ \tan x)\ dx}

By product rule of integration,

\displaystyle\longrightarrow\sf{\int x\ \sec x\ \tan x\ dx=x\int(\sec x\ \tan x)\ dx-\int\dfrac{dx}{dx}\left[\int(\sec x\ \tan x)\ dx\right]\ dx}

\displaystyle\longrightarrow\sf{\int x\ \sec x\ \tan x\ dx=x\ \sec x-\int\sec x\ dx}

\displaystyle\longrightarrow\sf{\int x\ \sec x\ \tan x\ dx=x\ \sec x-\int\dfrac{\sec x(\sec x+\tan x)}{\sec x+\tan x}\ dx}

\displaystyle\longrightarrow\sf{\int x\ \sec x\ \tan x\ dx=x\ \sec x-\int\dfrac{\sec x\tan x+\sec^2x}{\sec x+\tan x}\ dx}

\displaystyle\longrightarrow\sf{\underline{\underline{\int x\ \sec x\ \tan x\ dx=x\ \sec x-\ln|\sec x+\tan x|+c}}}

Similar questions