Math, asked by hassan4938, 23 hours ago

Use mathematical induction to prove n! ≥ 2 n−1 for all integers n ≥ 1.

Answers

Answered by rohitsrivatsav1779
0

Answer:

Yes of course it's correct

Answered by shownmintu
2

Tip:

If P(n) is a statement involving natural number n, such that

(i) P(1) is true, i.e., the statement is true for n=1

(ii) If P(k+1) is true whenever P(k) is true , then P(n) is true for all natural numbers.

Step

Step 1 of 3:

Let P(n):n!\geq 2n-1;n\geq1                         (1)

When n=1,     P(1):1!\geq2(1)-1\\~~~~~~~~~~1\geq1           for n\geq1, which is true

P(1) is true.

Step 2 of 3:

Let us assume that P(k) is true for any positive integer k

     P(k):k!\geq2k-1, ~n\geq1                                (2)

Step 3 of 3:

Now, we shall prove that P(k+1) is also true

    P(k+1):(k+1)!\geq2(k+1)-1,~n\geq1\\            (3)  

Now, ~~~~~~~~k!\geq2k-1;n\geq1      

Multiplying both sides by (k+1)

(k+1)k!~\geq(k+1)(2k-1);n\geq1\\(k+1)!\geq2k^2-k+2k-1\\(k+1)!\geq2k^2+k-1                           (4)

Here, k\in N so, k^2\geq1

2k^2+k-1\geq2k+1

So, from (4) we have, (k+1)!\geq 2k+1

Thus,P(k+1) is true, whenever  P(k) is true .  

Final Answer:

By mathematical induction, P(n) is true for all integers n\geq1.

Similar questions