Use mathematical induction to prove that
1 + 2 + 3 + ... + n = n (n + 1) / 2
for all positive integers n.
Answers
Answered by
18
Solution to Problem 1:
Let the statement P (n) be
1 + 2 + 3 + ... + n = n (n + 1) / 2
STEP 1: We first show that p (1) is true.
Left Side = 1
Right Side = 1 (1 + 1) / 2 = 1
Both sides of the statement are equal hence p (1) is true.
STEP 2: We now assume that p (k) is true
1 + 2 + 3 + ... + k = k (k + 1) / 2
and show that p (k + 1) is true by adding k + 1 to both sides of the above statement
1 + 2 + 3 + ... + k + (k + 1) = k (k + 1) / 2 + (k + 1)
= (k + 1)(k / 2 + 1)
= (k + 1)(k + 2) / 2
The last statement may be written as
1 + 2 + 3 + ... + k + (k + 1) = (k + 1)(k + 2) / 2
Which is the statement p(k + 1).
Similar questions
English,
7 months ago
Psychology,
7 months ago
Math,
1 year ago
Chemistry,
1 year ago
English,
1 year ago