Math, asked by HajmolaAnardana, 9 months ago

Use Pythagoras theorem and write proof of above theorem "the lengths of tangents drawn from an external point to a circle are equal."​

Answers

Answered by dasarisanthivardhan
4

HOPE THIS HELPS YOU

MARK ME AS BRAINLIST

Attachments:
Answered by Anonymous
228

\huge\bold\pink\bigstar\huge{\overbrace{\underbrace{\purple{ℍoℓα!!!}}}}\huge\bold\pink\bigstar

\\

\huge\underline{\underline{\bf\black{Question\::-}}}

\\

\sf\red{Use\:Pythagoras\:theorem\:and\:write\:proof\:of }

\sf\green{above\:theorem\:"the\:lengths\:of\:tangents}

\sf\blue{drawn\:from\:an\:external\:point}

\sf\orange{to\:a\:circle\:are\: usually\: equal}

\\

\huge\underline{\underline{\bf\black{Solution\::-}}}

\\

\huge{\orange{\underline{\red{\mathscr{Given :-}}}}}\\

\\

\sf\pink{Two\:tangents\:PA\:and\:P \:to\:a\:circle\:with}

\sf\pink{center\:O,\:from\:an\: exterior\: point\:P.}

\\

\huge{\orange{\underline{\red{\mathbb{R.T.P :-}}}}}\sf\orange{PA\:=\:PB}

\\

\huge{\orange{\underline{\red{\mathscr{Proof :-}}}}}

\\

\red{In\:triangle\:OAP;\:angle\:OAP\:= 90°}

\sf\green{.°.\:AP^2\:=\:OP^2\:-\:OA^2}

\sf\blue{[°.°\: Pythagoras\:theorem]}

\implies\sf\purple{AP^2\:=\:OP^2\:-\:OB^2}

\sf\red{[°.°\:OA\:=\:OB,\:radii\:of\:the\:same\:circle]}

\sf\pink{=\:BP^2}

\implies\sf\green{AP^2\:=\:BP^2}

\implies\sf\blue{PA\:=\:PB}

\\

\huge\underline{\underline{\bf\pink{Hence\:Proved}}}

Attachments:
Similar questions