Use rules of inference to show that if ∀x(p (x) ∨ q(x)), ∀x(¬q(x) ∨ s(x)), ∀x(r(x) → ¬s(x)), and ∃x¬p (x) are true, then ∃x¬r(x) is true.
Answers
Answered by
0
01 ∀x[P(x)→Q(x)] premise
02 ∀x[Q(x)→R(x)] premise
03 ∃x[¬R(x)] premise
04 ¬R(a) assumption
05 P(a) assumption
06 P(a)→Q(a) ∀elim 01 a/x
07 Q(a) MP 06 05
08 Q(a)→R(a) ∀elim 02 a/x
09 R(a) MP 08 07
10 ⊥ contradiction 09 04
11 ¬P(a) ¬intro 05-10
12 ∃x[¬P(x)] ∃intro 11 a/x
13 ∃x[¬P(x)] ∃elim 03 04-12
Similar questions