Use suitable identities to find the following products : (I) (X+8) (X - 10) (II) (X+4) (X+10) class 8 Question
Answers
Step-by-step explanation:
Q:-Use suitable identities to find the following products : (I) (X+8) (X - 10) (II) (X+4) (X+10)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
════════════XXX═════════════
solving (I)
Here this identify is used:-
solving (ii)
════════════XXX═════════════
HOPE IT HELPS YOU..
_____________________
Thankyou:)
Answer:
Identity:
An identity is an equality which is true for
all values of a variable in the equality.
(x + a) (x +
b) = x²+(a + b) x +
ab
In an identity the right hand side expression
is called expanded form of the left hand side expression.
----------------------------------------------------------------------------------------------------
Solution:
(i) Using identity,
[(x + a) (x +
b) = x² + (a + b) x +
ab]
In (x + 4) (x + 10),
a = 4 &
b = 10
Now,
(x + 4) (x + 10)
= x² + (4 + 10)x + (4 × 10)
= x² + 14x+
40
(ii) (x + 8) (x –
10)
Using identity,
[(x + a) (x +
b) = x² + (a + b) x +
ab]
Here, a = 8 & b = –10
(x + 8) (x – 10)
= x²+{8+(– 10)}x +{8×(– 10)}
= x² + (8 – 10)x –
80
= x² – 2x –
80
(iii) (3x + 4) (3x –
5)
Using identity,
[(x +
a) (x + b) = x² + (a + b) x +
ab]
Here, x = 3x , a = 4 &
b = -5
(3x + 4) (3x – 5)
=(3x)²+{4 + (-5)}3x +{4×(-5)}
= 9x² + 3x(4
– 5) – 20
= 9x² – 3x –
20
(iv) (y² +
3/2) (y² – 3/2)
Using identity,
[ (x + y)
(x –y) = x² – y²
]
Here, x = y² and y =
3/2
(y² + 3/2) (y² –
3/2)
= (y²)² –
(3/2)2
= y4– 9/4
(v) (3 – 2x) (3 + 2x)
Using identity,
[(x + y)
(x –y) = x² – y²
Here, x = 3 & y = 2x
(3 – 2x) (3 + 2x)
= 3² – (2x)²
=9– 4x²
=========================================================
Hope this will help you...