Math, asked by ashapatelashapatel34, 17 days ago

Use suitable identity to find (2a -7) (2a-7)
class 8th Maths​

Answers

Answered by AestheticDude
121

Answer :-

\rm{ \bf 4a^2 -28a+49}\; is\;the\;answer

Step-By-Step-Explanation :-

\rm (2a-7)(2a-7)

\rm= (2a-7)^2

Using Suitable Identity :-

\boxed{\underline{\tt (x-y)^2=x^2-2xy+y^2}}

Thus , we have

x = 2a , y = 7

\rm\implies (2a-7)^2=(2a)^2-2[(2a)(7)]+(7)^2

\rm\implies (2a-7)^2=2^2a^2-4a[(7)]+(7)^2

\rm\implies (2a-7)^2=4a^2-28a+49

Additional Information :-

\rm\bigstar\underline{\bf Identity\; 1}

\rm (a+b)^2=(a+b)(a+b)

\rm =a(a+b)+b(a+b)

\rm =a^2+ab+ab+b^2

\rm =a^2+2ab+b^2

\rm\bigstar\underline{\bf Identity\; 2}

\rm (a-b)^2=(a-b)(a-b)

\rm =a(a-b)-b(a-b)

\rm= a^2-ab-ab+b^2

\rm =a^2-2ab+b^2

\rm\bigstar\underline{\bf Identity\; 3}

\rm (a+b)(a-b)=a(a-b)+b(a-b)

\rm =a^2-ab+ab-b^2

\rm =a^2-b^2

\rm\bigstar\underline{\bf Identity\; 4}

\rm (x+a)(x+b)=x(x+b)+a(x+b)

\rm =x^2+bx+ax+ab

\rm = x^2+x(a+b)+ab

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬


Aryan0123: Perfect!
Similar questions