use suitable indentity to get each of the following product:
1) (3a-12) (3a-12)
2) x/2+3y/4) (x/2+3y/4)
Answers
Answered by
1
Answer:
1) 9a² + 144 -72a
2) x²/4 + 9y²/16 + 3xy/4
Step-by-step explanation:
1)
(3a-12)(3a-12)
= (3a-12)²
Using (x-y)² = x² + y² - 2xy
where x = 3a
y = 12
(3a-12)²
= (3a)² + 12² - 2(3a)(12)
= 9a² + 144 - 72a
2)
(x/2 + 3y/4)(x/2 + 3y/4)
= (x/2 + 3y/4)²
Using (a+b)² = a² + b² + 2ab
where a = x/2
b = 3y/4
(x/2 + 3y/4)²
= (x/2)² + (3y/4)² + 2(x/2)(3y/4)
= x²/4 + 9y²/16 +3xy/4
Answered by
0
Step-by-step explanation:
1) (3a - 12) (3a-12)
= (3a - 12)²
= (3a)² - 2x3ax12 + (12)² [(a-b) = a² - 2ab + b²]
= 3a² - 72a + 144
2) (x/2 + 3y/4) ( x/2 + 3y/4)
= (x/2 + 3y/4)²
= (x/2)² + 2 X x/2 X 3y/4 + (3y/4)²
x²/4 + 3xy/4 + 9y²/19
Similar questions