Physics, asked by prachicm2004, 8 months ago

Use the approximation (1+x) ~1+nx,[x]<<1,to find
Approximate value for a)√99 b)1/1.01​

Answers

Answered by ShantanuPankaj
2

Answer:

99)^1/2

=(100–1)^1/2

=(100)^1/2.( 1- 1/100)^1/2

=10.[1 + ( -1/100) ]^1/2 .

=10[ 1+1/2.(-1/100) +(1/2).(-1/2).(-1/100)^2/(1.2)+…………………].

=10[1 - 1/200- (1/8)/10000+…………]

=10[1–0.005 -0.0000125+…….]

= 10 [1 -0.0050125+………….]

= 10[0.9949875+……..]

= 9.949875 , Answer.

Answered by abhi178
4

Use the approximation,

(1+x)^n\approx1+nx,|x|&lt;&lt;1

We have to find the approximate value for

(a) \sqrt{99} \:  \:  \:  \:  \:  \:  \:  \: (b) \frac{1}{1.01}

(a)\sqrt{99}

=\sqrt{100-1}\\\\=\sqrt{100\left(1-\frac{1}{100}\right)}\\\\=10(1-0.01)^{\frac{1}{2}}

here, 0.01 << 1

Using approximation,

(1+x)^n\approx1+nx,|x|&lt;&lt;1

≈ 10(1 - 0.01/2)

= 10(1 - 0.005)

= 10 × 0.995

= 9.95

Therefore the approximate value for √99 ≈ 9.95.

(b)\frac{1}{1.01}

=(1.01)^{-1}\\\\=(1+0.01)^{-1}

here, 0.01 << 1

Using approximation,

(1+x)^n\approx1+nx,|x|&lt;&lt;1

≈ (1 -0.01)

= (0.99)

Therefore the approximate value for 1/1.01 is 0.99

Similar questions