Use the distríbutivity of multiplication of rational numbers
added to simplify
Answers
Answer:
I HOPE THIS IS USEFUL. BTW WHAT IS YOUR CLASS?
Step-by-step explanation:
Solution :-
a)
Given that (3/5)[ (35/24)+(10/1)]
By distributive Property
=> [(3/5)×(35/24)]+[(3/5)×(10/1)]
=>[(3×35)/(5×24)]+[(3×10)/(5×1)]
=> [(105/120)]+[(30/5)]
=> (7/8)+(6)
=> [7+(8×6)]/6
=> (7+48)/6
=> 55/6
(3/5)[ (35/24)+(10/1)] = 55/6
________________________________
b)
Given that (-5/4)[(8/5)+(16/15)]
By distributive Property
=> [(-5/4)×(8/5)]+[(-5/4)×(16/15)]
=> [(-5×8)/(4×5)]+[(-5×16)/(4×15)]
=> (-40/20)+(-80/60)
=> (-2)+(-4/3)
=> [(-2×3)+(-4)]/3
=> (-6-4)/3
=> -10/3
(-5/4)[(8/5)+(16/15)] = -10/3
__________________________________
c)
Given that (2/7)[(7/16)-((21/4)]
By distributive Property
=> [(2/7)×(7/16)] - [(2/7)×(21/4)]
=> [(2×7)/(7×16)] -[(2×21)/(7×4)]
=> (14/112) - (42/28)
=> (1/8)-(3/2)
=>[1-(3×4)]/8
=> (1-12)/8
=> -11/8
(2/7)[(7/16)-((21/4)] = -11/8
________________________________
d)
Given that :(3/4)[(8/9)-40]
By distributive Property
=> [(3/4)×(8/9)]-[(3/4)×40]
=> [(3×8)/(4×9)] -[(3×40)/4]
=> (24/36)-(120/4)
=> (2/3)-(30)
=>[2-(30×3)]/3
=> (2-90)/3
=> -88/3
(3/4)[(8/9)-40] = -88/3
_________________________________
Answer:-
i) 55/6
ii) -10/3
iii) -11/8
iv) -88/3
Used formulae:-
Distributive Property:-
If a ,b , c are three rational numbers then
a×(b+c) = (a×b) + (a×c) is called Distributive Property under multiplication over addition.