Use the elimination method to solve the following system of equations:
3x + 4 = 8y; 5x + 3y +23 = 0
Answers
Answered by
0
Answer:
x=(-4), y=(-1)
Step-by-step explanation:
3x+4=8y-›3x-8y=(-4)--eq1
5x+3y+23=0-›5x+3y=(-23)--eq2
Multiply eq1 by 5 and eq2 by 3
5×(3x-8y=(-4))-›15x-40y=(-20)--eq3
3×(5x+3y=(-23))-›15x+9y=(-69)--eq4
Add eq3 and eq4, we get
49y=(-49)
y=(-49)/49
y=(-1)
Substitute y=(-1) in eq1
3x-8y=(-4)
3x-8(-1)=(-4)
3x+8=(-4)
3x=(-4)-8
3x=(-12)
x=(-12)/3
x=(-4)
Similar questions