Math, asked by manojprasad555555555, 9 months ago

Use the
EXAMPLE 1. Prove the following
1+ sin e
(i)
sec 0 + tan o (ii)
Vi-sin e
et​

Attachments:

Answers

Answered by Anonymous
27

AnswEr :

Given Expression,

 \sf \:  \sqrt{ \dfrac{1 + sin \:  x}{1 - sin \: x} }  = sec \: x + tan \: x

LHS

 \sf \:  \sqrt{ \dfrac{1 + sin \:  x}{1 - sin \: x} }

Rationalizing the denominator,we get :

 \implies \sf \:  \sqrt{ \dfrac{1 + sin \:  x}{1 - sin \: x}  \times  \dfrac{1  +  sin \: x}{1  +  sin \: x} }   \\  \\  \implies \:  \sf \:  \sqrt{ \dfrac{ \:  \:  ( 1 + sin \: x) {}^{2} }{1   - sin {}^{2}x } }

We know that,

sin²x + cos²x = 1 ➠ 1 - sin²x = cos²x

 \implies \:  \sf \:  \sqrt{ \dfrac{(1  + sin \: x) {}^{2} }{cos {}^{2} x} }  \\  \\  \implies \:  \sf \:  \sqrt{ \bigg(  \dfrac{1 + sin \: x}{cos \: x} \bigg) {}^{2} }  \\  \\  \implies \:  \sf \:  \dfrac{1}{cos \: x}  +  \dfrac{sin \: x}{cos \: x}  \\  \\  \implies \:  \sf \: sec \: x + tan \: x \implies \: RHS

Answered by Nereida
21

Question :

Prove :  \tt {\sqrt{ \dfrac{1 + sin \: \theta}{1 - sin \: \theta} } = sec \: \theta + tan \: \theta}

Answer :

Solving LHS :

 \sf { \sqrt{ \dfrac{1 + sin \: \theta}{1 - sin \: \theta} } }

Rationalizing :

 \leadsto \sf { = \sqrt{ \dfrac{1 + sin \: \theta}{1 - sin \: \theta} \times \dfrac{1 + sin \: \theta}{1 + sin \: \theta} }}

\leadsto \sf {= \sqrt{ \dfrac{ {( 1 + sin \: \theta)}^{2} }{1 - {sin}^{2}\theta } }}

Identity : sin²∅ + cos²∅ = 1

 \leadsto { \sf {=\sqrt{ \dfrac{{(1 + sin \: \theta)}^{2} }{{cos}^{2} \theta} }} }

\leadsto \sf {= \sqrt{{ \bigg( \dfrac{1 + sin \: \theta}{cos \: \theta} \bigg)}^{2} }}

 \leadsto \sf{ =\dfrac{1}{cos \: \theta} + \dfrac{sin \: \theta}{cos \: \theta} }

\leadsto \sf {=sec \: \theta + tan \: \theta }

Hence, Proved.

Similar questions