Math, asked by Umar5678, 2 months ago

Use the fact that the graph passes through (0,36) to find the coefficient a in f(x) = a(x + 3)(x + 1)(x - 2)(x – 3)

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\textsf{The graph of}\;\mathsf{f(x)=a(x+3)(x+1)(x-2)(x-3)}\;\textsf{passes through (0,36)}

\underline{\textbf{To find:}}

\textsf{The value of 'a'}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{f(x)=a(x+3)(x+1)(x-2)(x-3)}

\mathsf{Since\;the\;graph\;of\;f(x)=a(x+3)(x+1)(x-2)(x-3)}

\textsf{passes through (0,36), f(x) will be satisfied by (0,36)}

\implies\mathsf{f(0)=36}

\mathsf{a(0+3)(0+1)(0-2)(0-3)=36}

\mathsf{a(3)(1)(-2)(-3)=36}

\mathsf{a(18)=36}

\implies\mathsf{a=\dfrac{36}{18}}

\implies\boxed{\mathsf{a=2}}

\underline{\textbf{Find more:}}

If 81x⁴-72x³+px²-8x+1 is a perfect square the find the value of p

https://brainly.in/question/18376844  

Similar questions