Math, asked by mdrafika443, 5 months ago

Use the factor theorem to determine whether gx is factor of fx in each of the following cases fx 5 x cube + x square -5 x -1 gx is equals to X + 1

Answers

Answered by sethrollins13
78

Given :

  • A polynomial 5x³ + x² - 5x -1 .

To Find :

  • Whether x +1 is a factor of given polynomial or not .

Solution :

\longmapsto\tt{x+1=0}

\longmapsto\tt\bf{x=-1}

Putting x = -1 :

\longmapsto\tt{{5x}^{3}+{x}^{2}-5x-1}

\longmapsto\tt{5{(-1)}^{3}+{(-1)}^{2}-5(-1)-1}

\longmapsto\tt{5(-1)+1+5-1}

\longmapsto\tt{-5+1+5-1}

\longmapsto\tt{-4+4}

\longmapsto\tt\bf{0}

So , x + 1 is the factor of 5x³ + x² - 5x - 1 ...

Attachments:
Answered by Mister360
6

Step-by-step explanation:

Given:-

A polynomial namely {5x}^{3}+{x}^{2}-5x-1

To do:-

To check that (x+1)is a factor of polynomial or not

Solution:-

Let's understand the concept:-

  • if (x+1) is a factor then x+1=0 \mapsto x=(-1)
  • If (x+1)is a factor of the polynomial then the value of f (-1)=0
  • If (x+1) is not a factor of the polynomial then the value of ( f(-1){\cancel {=}}0)

Now

  • Substitute the values of x in the polynomial

{:}\mapsto f (-1)=5 (-1){}^{3}+(-1){}^{2}-5 (-1)-1=0

{:}\mapsto 5×(-1)+1+5-1=0

{:}\mapsto -5+1+5-1=0

{:}\mapsto -4+5-1=0

{:}\mapsto 1-1=0

{:}\mapsto 0=0

{:}\mapsto {\underline{\boxed{\bf {f (-1)=0}}}}

\therefore(x+1) is a factor of the polynomial ({5x}^{3}+{x}^{2}-5x-1)


Anonymous: Awesome!
Similar questions