Use the factor theorem to prove that (x+a) is a factor of (x^n+a^n) for any odd positive integer n
Answers
We know that if (x - α) is a factor of a polynomial p(x), then p(α) will be 0.
Here we have to prove that (x + a) is a factor of (x^n + a^n) for any odd positive integer n.
Let p(x) = (x^n + a^n).
If (x + a) has to be a factor of p(x), then p(-a) shall be equal to 0. So,
p(-a) = (-a)^n + a^n
Since n is an odd positive integer, it leaves remainder 1 on division by 2. So let n = 2k + 1, for any whole number k.
p(-a) = (-a)^(2k + 1) + a^(2k + 1)
p(-a) = (-a)^(2k) · (-a) + a^(2k + 1)
p(-a) = ((-a)^2)^k · (-a) + a^(2k + 1)
Since the square of any real number is non - negative,
p(-a) = (a^2)^k · (-a) + a^(2k + 1)
p(-a) = a^(2k) · a · (-1) + a^(2k + 1)
p(-a) = a^(2k + 1) · (-1) + a^(2k + 1)
p(-a) = - a^(2k + 1) + a^(2k + 1)
p(-a) = - a^n + a^n
p(-a) = 0
Hence Proved!
Answer:
Let p(x) = x^n + a^n , where n is odd positive integer.
Take (x+a)= 0
=> x = -a
Consider:
p(-a) = (-a) ^n + (a) ^n
= -a^n + a^n
= 0
Since, n is odd.
By Factor theorem,
(x+a) is a factor of p(x) when n is odd positive integer.
Step-by-step explanation: