Use the figure at the right.Given:CE//AB,find the measurement of the following angles
what's the answer the answer in this question pleaseee
Answers
The measures of the angles are as follows:
m∠ACD= 90°
m∠CAB= 90°
m∠CDB= 126°
m∠EDB= 54°
m∠CDE= 180°
Step-by-step explanation:
Given:
line CE ║ line AB
m∠DBA= 54°
To find:
measures of the angles given
Solution:
m∠CAB= 90°...........(perpendicular sign given in the figure)
It is gevn that line CE ║ line AB
m∠CAB & m∠ACD are in interior pair
∴ m∠CAB + m∠ACD=180°........(angles in interior pair are supplementary)
∴ 90° + m∠ACD=180°
∴ m∠ACD=180°-90°
∴ m∠ACD=90°
Consider quadrilateral CDBA
m∠ACD=90°, m∠DBA= 54°, m∠CAB= 90°
∠ACD+ ∠CDB+ ∠DBA+ ∠CAB = 360°.....(sum of all angles of a
quadrilateral is 360°)
∴ 90°+ ∠CDB+ 54°+ 90°=360°
∴∠CDB= 360°- 234°
∴m∠CDB= 126°
The angles EDB & CDB are in linear pair
∴m∠EDB + m∠CDB= 180°
∴m∠EDB + 126°=180°
∴m∠EDB= 180°-126°
∴ m∠EDB= 54°
The angles formed on CDE are in linear pair
Therefore, the measure of angle CDE will be 180°
∴ m∠CDE= 180°
Hence, the measures of angles are m∠ACD= 90°; m∠CAB= 90°; m∠CDB= 126°; m∠EDB= 54°; m∠CDE= 180°