Math, asked by SNalda1950, 11 months ago

Use the function f(x) = 2x3 - 3x2 + 7 to complete the exercises. f(−1) = f(1) = f(2) =

Answers

Answered by pulakmath007
3

f( - 1) = 2 , f(1) = 6 , f(2) = 11

Correct question : Use the function f(x) = 2x³ - 3x² + 7 to complete the exercises. f( - 1) = , f(1) = , f(2) =

Given :

f(x) = 2x³ - 3x² + 7

To find :

The value of f( - 1) , f(1) , f(2)

Solution :

Step 1 of 2 :

Write down the given function

Here the given function is

f(x) = 2x³ - 3x² + 7

Step 2 of 2 :

Find the value of f( - 1) , f(1) , f(2)

Putting x = - 1 in f(x) we get

\displaystyle \sf{ f( - 1) = 2 \times  {( - 1)}^{3}  - 3 {( - 1)}^{2} + 7  }

\displaystyle \sf{ \implies f( - 1) =   - 2  - 3+ 7  }

\displaystyle \sf{ \implies f( - 1) =   - 5+ 7  }

\displaystyle \sf{ \implies f( - 1) =  2}

 \boxed{ \:  \: \displaystyle \sf{  f( - 1) =  2} \:  \: }

Putting x = 1 in f(x) we get

\displaystyle \sf{ f( 1) = 2 \times  {(  1)}^{3}  - 3 {(  1)}^{2} + 7  }

\displaystyle \sf{ \implies f( 1) =   2  - 3+ 7  }

\displaystyle \sf{ \implies f( 1) =   - 1+ 7  }

\displaystyle \sf{ \implies f( 1) =  6}

 \boxed{ \:  \: \displaystyle \sf{  f(1) =  6} \:  \: }

Putting x = 2 in f(x) we get

\displaystyle \sf{ f(2) = 2 \times  {( 2)}^{3}  - 3 {( 2)}^{2} + 7  }

\displaystyle \sf{ \implies f(2) =  16  - 12 + 7  }

\displaystyle \sf{ \implies f(2) =  4 + 7  }

\displaystyle \sf{ \implies f(2) =  11}

 \boxed{ \:  \: \displaystyle \sf{  f(2) =  11} \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if polynomial p(t)=t⁴-t³+t²+6,then find p(-1)

https://brainly.in/question/3539645

2. Find the value of the polynomial 2x + 5 at x = – 3

https://brainly.in/question/50335429

#SPJ3

Similar questions