Accountancy, asked by suitable99, 1 year ago

Use the identity tan(x) = sin(x) / cos(x) in the left hand side of the given identity. 
tan2(x) - sin2(x) = sin2(x) / cos2(x) - sin2(x) 
= [ sin2(x) - cos2(x) sin2(x) ] / cos2(x) 
= sin2(x) [ 1 - cos2(x) ] / cos2(x) 
= sin2(x) sin2(x) / cos2(x) 
= sin2(x) tan2(x) which is equal to the right hand side of the given identity.


Answers

Answered by silvershades54
2

Explanation:

Use the identity tan(x) = sin(x) / cos(x) in the left hand side of the given identity.

tan2(x) - sin2(x) = sin2(x) / cos2(x) - sin2(x)

= [ sin2(x) - cos2(x) sin2(x) ] / cos2(x)

= sin2(x) [ 1 - cos2(x) ] / cos2(x)

= sin2(x) sin2(x) / cos2(x)

= sin2(x) tan2(x

Answered by Anonymous
1

tan2(x) - sin2(x) = sin2(x) / cos2(x) - sin2(x) 

= [ sin2(x) - cos2(x) sin2(x) ] / cos2(x) 

= sin2(x) [ 1 - cos2(x) ] / cos2(x) 

= sin2(x) sin2(x) / cos2(x) 

= sin2(x) tan2(x) which is equal to the right hand side of the given identity.

Similar questions