Use the identity tan(x) = sin(x) / cos(x) in the left hand side of the given identity.
tan2(x) - sin2(x) = sin2(x) / cos2(x) - sin2(x)
= [ sin2(x) - cos2(x) sin2(x) ] / cos2(x)
= sin2(x) [ 1 - cos2(x) ] / cos2(x)
= sin2(x) sin2(x) / cos2(x)
= sin2(x) tan2(x) which is equal to the right hand side of the given identity.
Answers
Answered by
2
Explanation:
Use the identity tan(x) = sin(x) / cos(x) in the left hand side of the given identity.
tan2(x) - sin2(x) = sin2(x) / cos2(x) - sin2(x)
= [ sin2(x) - cos2(x) sin2(x) ] / cos2(x)
= sin2(x) [ 1 - cos2(x) ] / cos2(x)
= sin2(x) sin2(x) / cos2(x)
= sin2(x) tan2(x
Answered by
1
tan2(x) - sin2(x) = sin2(x) / cos2(x) - sin2(x)
= [ sin2(x) - cos2(x) sin2(x) ] / cos2(x)
= sin2(x) [ 1 - cos2(x) ] / cos2(x)
= sin2(x) sin2(x) / cos2(x)
= sin2(x) tan2(x) which is equal to the right hand side of the given identity.
Similar questions