use the identity


Answers
Answered by
2
Solution :
***********†************************
We know the algebraic identity,
x² + ( a + b )x + ab = (x+a)(x+b)
************************************
Here ,
x² - 5x + 6
= x² + ( -2 - 3 )x + ( -2 ) ( -6 )
= x² + [ (-2 ) + ( -3 ) ] x + (-2)(-3)
Compare this with above identity
= [ x + ( -2 ) ][ x + ( -3 ) ]
= ( x - 2 )( x - 3 )
••••
***********†************************
We know the algebraic identity,
x² + ( a + b )x + ab = (x+a)(x+b)
************************************
Here ,
x² - 5x + 6
= x² + ( -2 - 3 )x + ( -2 ) ( -6 )
= x² + [ (-2 ) + ( -3 ) ] x + (-2)(-3)
Compare this with above identity
= [ x + ( -2 ) ][ x + ( -3 ) ]
= ( x - 2 )( x - 3 )
••••
Similar questions