Math, asked by jackjk1311, 11 months ago

Use the identity (x + a) (x + b) = x² + (a + b) x + ab to find the value of the following product :(1) (x - 7) (x - 12)
(2) (5 - 4x) (7 — 4x)(3) (x + 3/2) (2x +5/3)
(4) (3x + 3/2) (3x + 5/2)

Answers

Answered by MaheswariS
1

Answer:

Formula used:

\bf{(x+a)(x+b)=x^2+(a+b)x+ab}

\text{1. (x-7)(x-12)}

=x^2+(-7-12)x+(-7)(-12)

=x^2-19x+84

\boxed{(x-7)(x-12)=x^2-19x+84}

\text{2. (5-4x)(7-4x)}

=(4x-5)(4x-7)

=(4x)^2+(-5-7)(4x)+(-5)(-7)

=16x^2-48x+35

\boxed{(5-4x)(7-4x)=16x^2-48x+35}

\text{3. (x+3/2)(2x +5/3)}

=\frac{1}{2}(2x+3)(2x+\frac{5}{3})

=\frac{1}{2}[(2x)^2+(3+\frac{5}{3})(2x)+(3)(\frac{5}{3})]

=\frac{1}{2}[4x^2+\frac{28}{3}x+5]

\boxed{(x+3/2)(2x +5/3)=\frac{1}{2}[4x^2+\frac{28}{3}x+5]}

\text{4. (3x + 3/2)(3x + 5/2)}

=(3x)^2+(\frac{3}{2}+\frac{5}{2})(3x)+(\frac{3}{2})(\frac{5}{2})

=9x^2+12x+\frac{15}{4}

\boxed{(3x + 3/2)(3x + 5/2)=9x^2+12x+\frac{15}{4}}

Similar questions