use the information information given in the following figure to find:
- x
- angle B and C
this is my question
Answers
Answer:
Step-by-step explanation:
Therefore.,
•••♪
Step-by-step explanation:
Valueofx=22
\red {\angle B }\green {= 48\degree }∠B=48°
\red {\angle C }\green {= 83\degree }∠C=83°
Step-by-step explanation:
Given\: ABCD \: is \:a \: quadrilateral .GivenABCDisaquadrilateral.
\angle A = 90\degree∠A=90°
\angle B = (2x + 4)\degree∠B=(2x+4)°
\angle C = (3x - 5 )\degree∠C=(3x−5)°
\angle D = (8x - 15)\degree∠D=(8x−15)°
\boxed {\pink { sum \: of \: angles \: in \: quadrilateral = 360\degree }}
sumofanglesinquadrilateral=360°
\angle A + \angle B +\angle C + \angle D = 360\degree∠A+∠B+∠C+∠D=360°
\implies 90\degree + (2x+4)+(3x-5)+(8x-15)=360⟹90°+(2x+4)+(3x−5)+(8x−15)=360
\implies 13x + 74 = 360⟹13x+74=360
\implies 13x = 360 - 74⟹13x=360−74
\implies 13x = 286⟹13x=286
\implies x = \frac{286}{13}⟹x=
13
286
\implies x = 22\: ---(1)⟹x=22−−−(1)
\angle B = 2x + 4∠B=2x+4
\angle B = 2\times 22 + 4 \: [ From \: (1) ]∠B=2×22+4[From(1)]
\angle B = 44 + 4 = 48\degree∠B=44+4=48°
\angle C = 3x -5∠C=3x−5
\angle C = 3\times 22 - 5 \: [ From \: (1) ]∠C=3×22−5[From(1)]
\angle B = 88 - 5 = 83\degree∠B=88−5=83°
Therefore.,
\red {Value \: of \: x }\green { = 22 }Valueofx=22
\red {\angle B }\green {= 48\degree }∠B=48°
\red {\angle C }\green {= 83\degree }∠C=83°
•••♪