Math, asked by vaishnavi51, 1 year ago

use the information information given in the following figure to find:

- x
- angle B and C

this is my question

Attachments:

Answers

Answered by mysticd
22

Answer:

\red {Value \: of \: x }\green { = 22 }

\red {\angle B }\green {= 48\degree }

\red {\angle C }\green {= 83\degree }

Step-by-step explanation:

 Given\: ABCD \: is \:a \: quadrilateral .

 \angle A = 90\degree

 \angle B = (2x + 4)\degree

 \angle C = (3x - 5 )\degree

 \angle D = (8x - 15)\degree

 \boxed {\pink { sum \: of \: angles \: in \: quadrilateral = 360\degree }}

\angle A + \angle B +\angle C + \angle D = 360\degree

\implies 90\degree + (2x+4)+(3x-5)+(8x-15)=360

\implies 13x + 74 = 360

\implies 13x = 360 - 74

\implies 13x = 286

\implies x = \frac{286}{13}

\implies x = 22\: ---(1)

 \angle B = 2x + 4

\angle B = 2\times 22 + 4 \: [ From \: (1) ]

\angle B = 44 + 4 = 48\degree

 \angle C = 3x -5

\angle C = 3\times 22 - 5 \: [ From \: (1) ]

\angle B = 88 - 5  = 83\degree

Therefore.,

\red {Value \: of \: x }\green { = 22 }

\red {\angle B }\green {= 48\degree }

\red {\angle C }\green {= 83\degree }

•••♪

Answered by Anonymous
1

Step-by-step explanation:

Valueofx=22

\red {\angle B }\green {= 48\degree }∠B=48°

\red {\angle C }\green {= 83\degree }∠C=83°

Step-by-step explanation:

Given\: ABCD \: is \:a \: quadrilateral .GivenABCDisaquadrilateral.

\angle A = 90\degree∠A=90°

\angle B = (2x + 4)\degree∠B=(2x+4)°

\angle C = (3x - 5 )\degree∠C=(3x−5)°

\angle D = (8x - 15)\degree∠D=(8x−15)°

\boxed {\pink { sum \: of \: angles \: in \: quadrilateral = 360\degree }}

sumofanglesinquadrilateral=360°

\angle A + \angle B +\angle C + \angle D = 360\degree∠A+∠B+∠C+∠D=360°

\implies 90\degree + (2x+4)+(3x-5)+(8x-15)=360⟹90°+(2x+4)+(3x−5)+(8x−15)=360

\implies 13x + 74 = 360⟹13x+74=360

\implies 13x = 360 - 74⟹13x=360−74

\implies 13x = 286⟹13x=286

\implies x = \frac{286}{13}⟹x=

13

286

\implies x = 22\: ---(1)⟹x=22−−−(1)

\angle B = 2x + 4∠B=2x+4

\angle B = 2\times 22 + 4 \: [ From \: (1) ]∠B=2×22+4[From(1)]

\angle B = 44 + 4 = 48\degree∠B=44+4=48°

\angle C = 3x -5∠C=3x−5

\angle C = 3\times 22 - 5 \: [ From \: (1) ]∠C=3×22−5[From(1)]

\angle B = 88 - 5 = 83\degree∠B=88−5=83°

Therefore.,

\red {Value \: of \: x }\green { = 22 }Valueofx=22

\red {\angle B }\green {= 48\degree }∠B=48°

\red {\angle C }\green {= 83\degree }∠C=83°

•••♪

Similar questions