Math, asked by edgaroliva470, 3 months ago

use the law of rational exponent to simplify

1. (n4)3/2

2. 3b1/2 • b3/2

3. (a1/2)1/3

4. (12)3/4 / (4)1/4

5. (a3b4) 1/12


Answers

Answered by AditiHegde
0

The simplified form the following are :

1. n^{6}

2. 3b^{2}

3. a^{\frac{1}{6} }

4. 3(12)^{\frac{1}{2} }

5. (a)^{\frac{1}{4} }(b)^{\frac{1}{3} }

Given :

The form needs to be simplified.

To Find :

The simplified form of the given form

Solution :

First, we need to know "The Laws of Rational Exponent"

Rational Exponents:  A rational exponent is expressed in the form of                               x^{\frac{a}{b } a base as 'x' and the exponent as '\frac{a}{b}'.

The laws of Rational Exponents are:

  • a^{m} × a^{n} = a^{m+n}  
  •  \frac{a^{m} }{a^{n} } = a^{m-n}
  •  (a^{m} )^{n} = a^{mn}
  • a^{m} + b^{m} = (ab)^{m}
  • a^{-m} = \frac{1}{a^{m} }

1. (n^{4)} ^{\frac{3}{2} }  = n^{\frac{12}{2} }          (Using (a^{m})^{n} = a^{mn})

            = n^{6}

2. 3(b^{\frac{1}{2} })(b^{\frac{3}{2} } ) = 3b^{2}    ( Using a^{m} +a^{n} = a^{m + n} )

3.  (a^{\frac{1}{2} })^{\frac{1}{3} } = a^{\frac{1}{6} }           ( Using (a^{m} )^{n} = a^{mn} )

4. \frac{12^{\frac{3}{4} } }{4^{\frac{1}{4} } }  = \frac{(4^{\frac{3}{4} } )(3^{\frac{3}{4} } ) }{4^{\frac{1}{4} } }      ( Using \frac{a^{m} }{a^{n} } = a^{m-n}  )

          = 4^{\frac{1}{2} }3^{\frac{3}{4}

          = 3(12^{\frac{1}{2} } )

5. (a^{3} b^{4} )^{\frac{1}{12} } = (a^{3} )^{\frac{1}{12} }  ×  (b^{4} )^{\frac{1}{12} }    ( Using (a^{m} )^{n} = (a^{mn} ) )

                 =  (a^{\frac{1}{4} } )(b^{\frac{1}{3} } )

#SPJ1

Similar questions