Science, asked by sujasri7d, 1 month ago

Use the periodic table or the activity series to predict if each single-replacement reaction will occur and, if so, write a balanced chemical equation.
1.

a) NaI + Cl2 → ?

b) AgCl + Au → ?

2.
a) Pt + H3PO4 → ?

b) Li + H2O → ? (Hint: treat H2O as if it were composed of H+ and OH− ions.)

3.
a) Pb(NO3)2 + KBr → ?

b) K2O + MgCO3 → ?

4.
a) Zn(NO3)2 + NaOH → ?

b) HCl + Na2S → ?

5.
a) Mg + HCl → ?

b) HI + Br2 → ?​

Answers

Answered by devindersaroha43
0

Answer:

Explanation:

A single-replacement reaction is a chemical reaction in which one element is substituted for another element in a compound, generating a new element and a new compound as products. For example,

2 HCl(aq) + Zn(s) → ZnCl2(aq) + H2(g)

is an example of a single-replacement reaction. The hydrogen atoms in HCl are replaced by Zn atoms, and in the process a new element—hydrogen—is formed. Another example of a single-replacement reaction is

2 NaCl(aq) + F2(g) → 2 NaF(s) + Cl2(g)

Here the negatively charged ion changes from chloride to fluoride. A typical characteristic of a single-replacement reaction is that there is one element as a reactant and another element as a product.

Not all proposed single-replacement reactions will occur between two given reactants. This is most easily demonstrated with fluorine, chlorine, bromine, and iodine. Collectively, these elements are called the halogens and are in the next-to-last column on the periodic table (see Figure 4.1 “Halogens on the Periodic Table”). The elements on top of the column will replace the elements below them on the periodic table but not the other way around. Thus, the reaction represented by

CaI2(s) + Cl2(g) → CaCl2(s) + I2(s)

will occur, but the reaction

CaF2(s) + Br2(ℓ) → CaBr2(s) + F2(g)

will not because bromine is below fluorine on the periodic table. This is just one of many ways the periodic table helps us understand chemistry

Answered by ms9655675
0

Answer:

Recognize chemical reactions as single-replacement reactions and double-replacement reactions.

Use the periodic table, an activity series, or solubility rules to predict whether single-replacement reactions or double-replacement reactions will occur.

Up to now, we have presented chemical reactions as a topic, but we have not discussed how the products of a chemical reaction can be predicted. Here we will begin our study of certain types of chemical reactions that allow us to predict what the products of the reaction will be.

A single-replacement reaction is a chemical reaction in which one element is substituted for another element in a compound, generating a new element and a new compound as products. For example,

2 HCl(aq) + Zn(s) → ZnCl2(aq) + H2(g)

is an example of a single-replacement reaction. The hydrogen atoms in HCl are replaced by Zn atoms, and in the process a new element—hydrogen—is formed. Another example of a single-replacement reaction is

2 NaCl(aq) + F2(g) → 2 NaF(s) + Cl2(g)

Here the negatively charged ion changes from chloride to fluoride. A typical characteristic of a single-replacement reaction is that there is one element as a reactant and another element as a product.

Not all proposed single-replacement reactions will occur between two given reactants. This is most easily demonstrated with fluorine, chlorine, bromine, and iodine. Collectively, these elements are called the halogens and are in the next-to-last column on the periodic table (see Figure 4.1 “Halogens on the Periodic Table”). The elements on top of the column will replace the elements below them on the periodic table but not the other way around. Thus, the reaction represented by

CaI2(s) + Cl2(g) → CaCl2(s) + I2(s)

will occur, but the reaction

CaF2(s) + Br2(ℓ) → CaBr2(s) + F2(g)

will not because bromine is below fluorine on the periodic table. This is just one of many ways the periodic table helps us understand chemistry.

Figure 4.1 Halogens on the Periodic Table

Halogens

The halogens are the elements in the next-to-last column on the periodic table.

EXAMPLE 2

Will a single-replacement reaction occur? If so, identify the products.

MgCl2 + I2 → ?

CaBr2 + F2 → ?

Solution

Because iodine is below chlorine on the periodic table, a single-replacement reaction will not occur.

Because fluorine is above bromine on the periodic table, a single-replacement reaction will occur, and the products of the reaction will be CaF2 and Br2.

Test Yourself

Will a single-replacement reaction occur? If so, identify the products.

FeI2 + Cl2 → ?

Answer

Yes; FeCl2 and I2

Explanation:

this is a right answer

Similar questions