Use the principle of mathematical induction to prove that
for all natural number.
Answers
EXPLANATION.
Using the principle of mathematical induction.
⇒ 1² + 2² + 3² + . . . . . . . + n² = n(n + 1)(n + 2)/6.
For all natural number.
As we know that,
Let we put n = 1 in both L.H.S & R.H.S, we get.
⇒ L.H.S = 1² = 1.
⇒ R.H.S = n(n + 1)(n + 2)/6.
⇒ R.H.S = 1(1 + 1)(1 + 2)/6.
⇒ R.H.S = 1(2)(3)/6 = 6/6 = 1.
As we can see that,
Let we assume that P(k) is true for equation,
⇒ 1² + 2² + 3² + . . . . . . . + n² = n(n + 1)(n + 2)/6.
We will prove p(k + 1) is true.
⇒ 1² + 2² + 3² + . . . . . . . + (k + 1)².
⇒ k(k + 1)(k + 2)/6 + (k + 1)².
⇒ k(k + 1)(k + 2) + 6(k + 1)²/6.
⇒ k(k + 1)(k + 2) + 6(k + 1)/6.
⇒ (k + 2)(k(k + 1)) + 6(k + 1)/6.
⇒ (k + 2)(k² + k + 6k + 6)/6.
⇒ (k + 2)[k² + 6k + k + 6)]/6.
⇒ (k + 2)[k(k + 6) + 1(k + 6)]/6.
⇒ (k + 2)[(k + 1)(k + 6)]/6.
⇒ (k + 2)(k + 1)(k + 6)/6.
Hence, p(k + 1) is true when p(k) is true.
We can start this by,
Using the principle of mathematical induction,
Now put n = 1 in both LHS & RHS,
L.H.S = 1² = 1
R.H.S = n(n+1)(n + 2)/6
R.H.S = 1(1+1)(1+2)/6 = 1
Take that P(k) is true,
1² +2²+ 3² - - - + n² = n(n + 1)(n+2)/6
Now prove p(k + 1) is true,
→ 1² +2²+3²+ - - - + (k+1) ²
k(k+ 1)(k+ 2)/6 + (k+ 1)²
k(k+ 1)(k + 2) + 6(k + 1)/6
(k+ 2)(k²+k+6k+6)/6
(k+2)[k(k+6) + 1(k+6)]/6
(k+ 2)(k + 1)(k + 6)/6
So, p(k+ 1) is true, if p(k) is true.