Math, asked by DivineOath, 19 days ago

Use the principle of mathematical Induction to prove the following statements for all n belongs to Natural Number.
 \bf1 + 2 + 3+ ... + n =  \dfrac{1}{2}n(n + 1)
Relevant Answers Needed ​

Answers

Answered by mathdude500
35

\large\underline{\sf{Solution-}}

Let assume that

\rm \: P(n) : 1 + 2 + 3 +  -  -  -  -  + n = \dfrac{n(n + 1)}{2}

Step :- 1 For n = 1

\rm \: P(n) : 1 = \dfrac{1(1 + 1)}{2}

\rm \: P(n) : 1 = \dfrac{2}{2}

\rm \: P(n) : 1 = 1

\rm\implies \:\rm \: P(n) \: is \: true \: for \: n = 1 \\

Step :- 2 For n = k, Let assume that P(n) is true, where k is some natural number.

\rm \: P(k) : 1 + 2 + 3 +  -  -  -  -  + k = \dfrac{k(k + 1)}{2}  \\

Step :- 3 Now, we have to prove that P(n) is true for n = k + 1

So, we have to prove that

\rm \: P(k + 1) : 1 + 2 + 3 +  -  -  -  -  + k + (k + 1) = \dfrac{(k + 1)(k + 2)}{2}  \\

Consider LHS

\rm \:  1 + 2 + 3 +  -  -  -  -  + k + (k + 1) \\

\rm \: =  \: (1 + 2 + 3 +  -  -  -  -  + k) + (k + 1) \\

\rm \:  =  \: \dfrac{k(k + 1)}{2} + (k + 1)

\rm \:  =  \: \dfrac{k(k + 1) + 2(k + 1)}{2}

\rm \:  =  \: \dfrac{(k + 1)(k + 2)}{2}

\rm\implies \:\rm \: P(n) \: is \: true \: for \: n = k + 1 \\

Hence, By the Process of Principal of Mathematical Induction,

\boxed{\tt{ \:  \: \rm \:  1 + 2 + 3 +  -  -  -  -  + n  \: =  \: \dfrac{n(n + 1)}{2} \:  \: }} \\

Answered by Anonymous
32

solution

  • attachment.

hope it helps

Attachments:
Similar questions