Math, asked by shariq1817, 1 day ago

use this method (Pythagoras theorem) to solve @Takenname... ​

Attachments:

Answers

Answered by PopularStar
29

Solution is in attachment

。◕‿◕。

Attachments:
Answered by user0888
15

\huge\text{(b) $\dfrac{225}{64}$}

\large\underline{\large\underline{\text{Explanation}}}

We know that,

\cdots\longrightarrow\sin\theta=\dfrac{A}{H},\cos\theta=\dfrac{P}{H}.

Since,

\cdots\longrightarrow\cot\theta=\dfrac{\cos\theta}{\sin\theta}

let us suppose,

\cdots\longrightarrow A=8k,P=15k.

By the Pythagorean theorem, the hypotenuse is,

\cdots\longrightarrow \underline{A^{2}+P^{2}=H^{2}.}

\cdots\longrightarrow(8k)^{2}+(15k)^{2}=(17k)^{2}

\cdots\longrightarrow \underline{H={17k.}}

Then,

\cdots\longrightarrow\sin\theta=\dfrac{8}{17},\cos\theta=\dfrac{15}{17}.

Given that,

\dfrac{(2+2\sin\theta)(2-\sin\theta)}{(1+\cos\theta)(2-2\cos\theta)}

=\dfrac{2(1+\sin\theta)(1-\sin\theta)}{2(1+\cos\theta)(1-\cos\theta)}

=\dfrac{1-\sin^{2}\theta}{1-\cos^{2}\theta}

=\dfrac{1-\left(\frac{8}{17}\right)^{2}}{1-\left(\frac{15}{17}\right)^{2}}

=\dfrac{\frac{289-64}{289}}{\frac{289-225}{289}}

=\dfrac{289-64}{289-225}

=\dfrac{225}{64}.

So,

\cdots\longrightarrow\boxed{\dfrac{(2+2\sin\theta)(1-1\sin\theta)}{(1+\cos\theta)(1-\cos\theta)}=\dfrac{225}{64}.}

Choice (b) is the correct answer.

I hope you are satisfied.

Similar questions