Use trigonometric identity.....
cosec^ 6 A - cot^6A = 3cot^2Acosec^2A +1
Prove this
Answers
Answer:
Step-by-step explanation:
cosec ^6A = cot^ 6A + 3 cot^ 2A cosec^ 2A + 1
Then, we will prove it as :
To Prove:
cosec^ 6A = cot^6A + 3 cot ^2A cosec^ 2A + 1
i.e. cosec ^6A – cot ^6A – 3 cot ^2A cosec^ 2A = 1
Taking L.H.S. ,
cosec^ 6A – cot^ 6A – 3 cot ^2A cosec ^2A
= (cosec ^2A)3 – (cot ^2A)3 – 3 cot ^2A cosec^2A
= {(cosec^ 2A – cot ^2A) ((cosec ^2A)2 + (cot^ 2A)2 + cosec^ 2A cot ^2A)} – 3 cot ^2A cosec^ 2A
= {1 ((cosec ^2A)2 + (cot^ 2A)2 – 2 cosec^ 2A cot ^2A + 2 cosec^ 2A cot^ 2A + cosec ^2A cot^ 2A)} – 3 cot^ 2A cosec^ 2A
= {(cosec^ 2A – cot ^2A)^2 + 3 cosec ^2A cot^ 2A} – 3 cosec ^2A cot ^2A
= (cosec ^2A – cot^ 2A)^2 + 0
= (1)^2
= 1
Hence,
cosec ^2A – cot^ 6A – 3 cot ^2A cosec^ 2A = 1
⇒ cosec ^2A = cot^ 6A + 3 cot ^2A cosec^ 2A + 1
=> cosec^ 6 A - cot^6A = 3cot^2Acosec^2A +1