Science, asked by raghav302, 11 months ago

uses of iron pls answer fast

Answers

Answered by aronsinu
1

Answer:

The period in human history beginning in about 1200 B.C. is called the Iron Age. It was at about this time that humans first learned how to use iron metal. But in some ways, one could refer to the current era as the New Iron Age. Iron is probably the most widely used and most important metal today. No other metal is available to replace iron in all its many applications.

Iron is a transition metal. The transition metals are the elements that make up Groups 3 through 12 in the periodic table. The periodic table is a chart that shows how elements are related to one another. The transition metals are typical metals in that they tend to be bright, shiny, silvery solids. They all tend to conduct heat and electricity well. And they usually have high melting points.

SYMBOL  

Fe

EYE-um , children play on the Williamette meteorite in Hayden Planetarium in New York City, in 1939.

Some meteorites are very rich in iron. Here, children play on the Williamette meteorite in Hayden Planetarium in New

Discovery and naming

Ancient Egyptians had learned how to use iron before the First Dynasty, which began in about 3400 B.C. The Egyptians probably found the iron in meteorites. Meteorites are chunks of rock and metal that fall from the sky. Some meteorites are very rich in iron. The Egyptians made tools and jewelry out of iron.

Iron is probably the most widely used and most important metal today.

Iron was also known to early Asian civilizations. In Delhi, India, for example, a pillar made out of iron built in A.D. 415 still stands. It weighs 6.5 metric tons and remains in good condition after nearly 1,600 years.

Early Chinese civilizations also knew about iron. Workers learned to produce iron as early as 200 B.C. A number of iron objects, including cannons, remain from the Han period (202 B.C. to A.D. 221).

The Bible also includes many mentions of iron. For example, a long passage in the book of Job describes the mining of iron. Other passages tell about the processing of iron ore to obtain iron metal.

By the time of the Roman civilization, iron had become an essential metal. The historian Pliny (A.D. 23-79) described the role of iron in Rome:

It is by the aid of iron that we construct houses, cleave rocks, and perform so many other useful offices of life. But it is with iron also that wars, murders, and robberies are effected, and this, not only hand to hand, but from a distance even, by the aid of weapons and winged weapons, now launched from engines, now hurled by the human arm, and now furnished with feathery wings.

Even from the earliest days, humans probably seldom used iron in a pure form. It was difficult to make iron that was free of impurities, such as carbon (charcoal) and other metals. More important, however, it became obvious that iron with impurities was a stronger metal that iron without impurities.

It was not until 1786, however, that scientists learned what it was in steel that made it a more useful metal than iron. Three researchers, Gaspard Monge (1746-1818), C. A. Vandermonde, and Claude Louis Berthollet (1748-1822) solved the puzzLe. They found that a small amount of carbon mixed with iron produced a strong alloy. That alloy was steel. Today, the vast amount of iron used in so many applications is used in the form of steel, not pure iron.

Ancient Egyptians had learned how to use iron before the First Dynasty, which began in about 3400 B.C.

The chemical symbol for iron is Fe. That symbol comes from the Latin name for iron, ferrum.

Physical properties

Iron is a silvery-white or grayish metal. It is ductile and malleable. Ductile means capable of being drawn into thin wires. Malleable means capable of being hammered into thin sheets. It is one of only three naturally occurring magnetic elements. The other two are nickel and cobalt

Iron has a very high tensile strength. Tensile means it can be stretched without breaking. Iron is also very workable. Workability is the ability to bend, roll, hammer, cut, shape, form, and otherwise work with a metal to get it into a desired shape or thickness.

The melting point of pure iron is 1,536°C (2,797°F) and its boiling point is about 3,000°C (5,400°F). Its density is 7.87 grams per cubic centimeter. The melting point, boiling point, and other physical properties of steel alloys may be quite different from those of pure iron.

Chemical properties

Iron is a very active metal. It readily combines with oxygen in moist air. The produc

Similar questions