Using a fig. Prove the trignometric identity
1+ tan^2 P = sec^2 P.
Answers
Answered by
1
Answer:As k∧2=A∧2+L∧2
devided by A∧2
(K/A)∧2=(A/A)∧2+(L/A)∧2
As K/A=secp & L/A=tanp
sec∧2p=1+tan∧2p
Step-by-step explanation:
Similar questions