Using a suitable identity, factorise :
p (q=r)+q (r-p)2 + p (p-q)»
Answers
Answered by
0
Answer:
Solution :
p³ (q - r)³ + q³ (r - p)³+r³(p - q)³
⇒ [p (q - r)]³+[q (r - p)]³+ [r (p - q)]³
__
if,
a = p (q - r) , b = q (r - p) , c = r (p - q)
By adding a , b & c,
We get,
⇒ a + b + c = p (q - r) + q (r - p) + (p - q) = (pq - pr) + (qr - pq) + (pr - qr) = pq - pq + qr - qr + pr - pr = 0
We know that,
If a + b + c = 0,
then,
a³ + b³ + c³ = 3abc (Identity)
So,
By substituting,
a = p (q - r) , b = q (r - p) , c = r (p - q)
We get,
⇒ [p(q - r)]³ + [q(r - q)]³ + [r(p - q)]³ = 3pqr (q - r)(r - p)(p - q)
⇒p³ (q - r)³ + q³ (r - p)³ + r³ (p - q)³ = 3pqr (q - r)(r - p)(p - q)
The factorized form of p³ (q - r)³ + q³ (r - p)³ + r³ (p - q)³ is 3pqr (q - r)(r - p)(p - q)
Similar questions