Math, asked by wwwbpsvishwajeet, 9 months ago

Using a suitable identity, find the following products
[2x/3y + 3x/2y] [2x/3y + 3x/2y]​

Answers

Answered by Anonymous
9

 \color{red}  {\mathfrak{ \huge \underline{Question}}}

 \rm \:  \to \: using \: a \: suitable \: identity \: find \: the \: product

 \rm \{  \frac{2x}{3y}  +  \frac{3x}{2y}  \} \{ \frac{2x}{3y}  +  \frac{3x}{2y}  \}

 \color{red}  {\mathfrak{ \huge \underline{solution}}}

\rm \{  \frac{2x}{3y}  +  \frac{3x}{2y}  \} \{ \frac{2x}{3y}  +  \frac{3x}{2y}  \}

\rm \{  \frac{2x}{3y}  +  \frac{3x}{2y}  \} {}^{2}

 \rm\: by \: using \: this \: identity

 \implies\boxed{\green{ \rm \: (a + b) {}^{2} =  {a}^{2} +  {b}^{2}  + 2ab  }}

 \to \rm \: ( \frac{2x}{3y} ) {}^{2}  + ( \frac{3x}{2y} ) {}^{2}  + 2 \times  \frac{2x}{3y}  \times  \frac{3x}{2y}

 \rm \:  \to \:  \frac{4 {x}^{2} }{9 {y}^{2} }  +  \frac{9 {x}^{2} }{4 {y}^{2} }  + 2 \times  \frac{6 {x}^{2} }{6 {y}^{2} }

\rm \:  \to \:  \frac{4 {x}^{2} }{9 {y}^{2} }  +  \frac{9 {x}^{2} }{4 {y}^{2} }  +    \frac{2 {x}^{2} }{ {y}^{2} }

   \rm \: taking \: common \:  \:  \:  \frac{ {x}^{2} }{ {y}^{2} }

 \to \:  \rm \:  \frac{x {}^{2} }{ {y}^{2} } ( \frac{4}{9}  +  \frac{9}{4}  +  \frac{2}{1} )

  \rm \: taking \: lcm \: is \: 36

 \rm\to \frac{x {}^{2} }{ {y}^{2} } ( \frac{4 \times 4 + 9 \times 9 + 2 \times 36}{36} )

\rm\to \frac{x {}^{2} }{ {y}^{2} }( \frac{16 + 81 + 72}{36} )

\rm\to \frac{x {}^{2} }{ {y}^{2} }( \frac{169}{36} )

\rm\to \frac{169x {}^{2} }{ 36{y}^{2} }

\color{red}  {\mathfrak{ \huge \underline{answer}}}

 \implies\boxed{\blue{ \rm \: {\frac{169x {}^{2} }{ 36{y}^{2} }}}}

Answered by InfiniteSoul
6

\sf{\huge{\bold{\pink{\bigstar{\boxed{\boxed{Solution}}}}}}}

\sf\implies [\dfrac{2x}{3y} + \dfrac{3x}{2y}] [\dfrac{2x}{3y} + \dfrac{3x}{2y}]

\sf\implies [\dfrac{2x}{3y} + \dfrac{3x}{2y}]^2

\sf{\red{\boxed{\bold{( a + b )^2= a^2+ b^2 + 2ab }}}}

\sf\implies [(\dfrac{2x}{3y})^2 + (\dfrac{3x}{2y})^2 + 2\times \dfrac{2x}{3y}\times \dfrac{3x}{2y}]

\sf\implies [\dfrac{4x^2}{9y^2} + \dfrac{9x^2}{4y^2} +\dfrac{ 2x^2}{y^2}]

\sf\implies\dfrac{ 4\times 4x^2 + 9\times 9x^2+ 2\times 36x^2 }{ 36 y^2}

\sf\implies\dfrac{169x^2}{36y^2}

\sf{\blue{\boxed{\bold{\dag \dfrac{169x^2}{36y^2} }}}}

Similar questions